Artificial intelligence workload migration for planet-scale artificial intelligence infrastructure service
The disclosure herein describes platform-level migration for deep learning training (DLT) jobs from a checkpointed stated between a source node and a destination node. The checkpointing is performed through capturing GPU state (e.g., device state) and CPU state (e.g., host state). The GPU state incl...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Sivathanu, Muthian Nehme, Rimma Vladimirovna Xun, Lu Shukla, Dharma Kiritkumar |
description | The disclosure herein describes platform-level migration for deep learning training (DLT) jobs from a checkpointed stated between a source node and a destination node. The checkpointing is performed through capturing GPU state (e.g., device state) and CPU state (e.g., host state). The GPU state includes GPU data (e.g., model parameters, optimizer state, etc.) that is located in the GPU and GPU context (e.g., the default stream in GPU, various handles created by libraries). Restoring the DLT job on the destination node involves resumption of processing of a destination GPU at the same checkpointed state. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US12166829B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US12166829B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US12166829B23</originalsourceid><addsrcrecordid>eNqNjDEOwjAMALswIOAP5gEdGqQKRkAgdmCuLONULiaJnBS-DwMrEtMtdzethq0V8UKCChIKq0rPgRhe0e4a8QYP6Q2LxAA-GiTFwKXOhMqAP1oJ3jAXG6mMxpDZnkI8ryYeNfPiy1m1PB4u-1PNKXacExJ_1t313Limbddus3Orf5w3WfNCwA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Artificial intelligence workload migration for planet-scale artificial intelligence infrastructure service</title><source>esp@cenet</source><creator>Sivathanu, Muthian ; Nehme, Rimma Vladimirovna ; Xun, Lu ; Shukla, Dharma Kiritkumar</creator><creatorcontrib>Sivathanu, Muthian ; Nehme, Rimma Vladimirovna ; Xun, Lu ; Shukla, Dharma Kiritkumar</creatorcontrib><description>The disclosure herein describes platform-level migration for deep learning training (DLT) jobs from a checkpointed stated between a source node and a destination node. The checkpointing is performed through capturing GPU state (e.g., device state) and CPU state (e.g., host state). The GPU state includes GPU data (e.g., model parameters, optimizer state, etc.) that is located in the GPU and GPU context (e.g., the default stream in GPU, various handles created by libraries). Restoring the DLT job on the destination node involves resumption of processing of a destination GPU at the same checkpointed state.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241210&DB=EPODOC&CC=US&NR=12166829B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241210&DB=EPODOC&CC=US&NR=12166829B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Sivathanu, Muthian</creatorcontrib><creatorcontrib>Nehme, Rimma Vladimirovna</creatorcontrib><creatorcontrib>Xun, Lu</creatorcontrib><creatorcontrib>Shukla, Dharma Kiritkumar</creatorcontrib><title>Artificial intelligence workload migration for planet-scale artificial intelligence infrastructure service</title><description>The disclosure herein describes platform-level migration for deep learning training (DLT) jobs from a checkpointed stated between a source node and a destination node. The checkpointing is performed through capturing GPU state (e.g., device state) and CPU state (e.g., host state). The GPU state includes GPU data (e.g., model parameters, optimizer state, etc.) that is located in the GPU and GPU context (e.g., the default stream in GPU, various handles created by libraries). Restoring the DLT job on the destination node involves resumption of processing of a destination GPU at the same checkpointed state.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEOwjAMALswIOAP5gEdGqQKRkAgdmCuLONULiaJnBS-DwMrEtMtdzethq0V8UKCChIKq0rPgRhe0e4a8QYP6Q2LxAA-GiTFwKXOhMqAP1oJ3jAXG6mMxpDZnkI8ryYeNfPiy1m1PB4u-1PNKXacExJ_1t313Limbddus3Orf5w3WfNCwA</recordid><startdate>20241210</startdate><enddate>20241210</enddate><creator>Sivathanu, Muthian</creator><creator>Nehme, Rimma Vladimirovna</creator><creator>Xun, Lu</creator><creator>Shukla, Dharma Kiritkumar</creator><scope>EVB</scope></search><sort><creationdate>20241210</creationdate><title>Artificial intelligence workload migration for planet-scale artificial intelligence infrastructure service</title><author>Sivathanu, Muthian ; Nehme, Rimma Vladimirovna ; Xun, Lu ; Shukla, Dharma Kiritkumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US12166829B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Sivathanu, Muthian</creatorcontrib><creatorcontrib>Nehme, Rimma Vladimirovna</creatorcontrib><creatorcontrib>Xun, Lu</creatorcontrib><creatorcontrib>Shukla, Dharma Kiritkumar</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sivathanu, Muthian</au><au>Nehme, Rimma Vladimirovna</au><au>Xun, Lu</au><au>Shukla, Dharma Kiritkumar</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Artificial intelligence workload migration for planet-scale artificial intelligence infrastructure service</title><date>2024-12-10</date><risdate>2024</risdate><abstract>The disclosure herein describes platform-level migration for deep learning training (DLT) jobs from a checkpointed stated between a source node and a destination node. The checkpointing is performed through capturing GPU state (e.g., device state) and CPU state (e.g., host state). The GPU state includes GPU data (e.g., model parameters, optimizer state, etc.) that is located in the GPU and GPU context (e.g., the default stream in GPU, various handles created by libraries). Restoring the DLT job on the destination node involves resumption of processing of a destination GPU at the same checkpointed state.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US12166829B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC COMMUNICATION TECHNIQUE ELECTRIC DIGITAL DATA PROCESSING ELECTRICITY IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION |
title | Artificial intelligence workload migration for planet-scale artificial intelligence infrastructure service |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A44%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Sivathanu,%20Muthian&rft.date=2024-12-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS12166829B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |