Method and system for recommending tool configurations in machining
This disclosure relates generally to recommending tool configurations in machining. The machining tool configuration selection involves the selection of several tool specification parameters concerning the material, geometry and composition of the machining tool. The state-of-the-art methods uses a...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Das, Prasenjit Basavarsu, Purushottham Gautham Muhammed, Bilal Pusuluri, Srimannarayana Sharma, Sunil |
description | This disclosure relates generally to recommending tool configurations in machining. The machining tool configuration selection involves the selection of several tool specification parameters concerning the material, geometry and composition of the machining tool. The state-of-the-art methods uses a rule and knowledge-based system to select tool configuration, however these methods do not recommend tool configurations which satisfy customer requirement. Embodiments of the present disclosure uses a hierarchical model which is trained to predict acceptable tool specification parameters for a given requirement by learning the patterns from past tool selection data. Further a probabilistic approach is used to predict the top set of recommendations of tool configurations with a probability score for each prediction. The disclosed method is used for recommending tool configurations in a cylindrical grinding wheel process. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US12165083B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US12165083B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US12165083B23</originalsourceid><addsrcrecordid>eNrjZHD2TS3JyE9RSMxLUSiuLC5JzVVIyy9SKEpNzs_NTc1LycxLVyjJz89RSM7PS8tMLy1KLMnMzytWyMxTyE1MzsjMAyrgYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGRoZmpgYWxk5GxsSoAQCnQjL4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method and system for recommending tool configurations in machining</title><source>esp@cenet</source><creator>Das, Prasenjit ; Basavarsu, Purushottham Gautham ; Muhammed, Bilal ; Pusuluri, Srimannarayana ; Sharma, Sunil</creator><creatorcontrib>Das, Prasenjit ; Basavarsu, Purushottham Gautham ; Muhammed, Bilal ; Pusuluri, Srimannarayana ; Sharma, Sunil</creatorcontrib><description>This disclosure relates generally to recommending tool configurations in machining. The machining tool configuration selection involves the selection of several tool specification parameters concerning the material, geometry and composition of the machining tool. The state-of-the-art methods uses a rule and knowledge-based system to select tool configuration, however these methods do not recommend tool configurations which satisfy customer requirement. Embodiments of the present disclosure uses a hierarchical model which is trained to predict acceptable tool specification parameters for a given requirement by learning the patterns from past tool selection data. Further a probabilistic approach is used to predict the top set of recommendations of tool configurations with a probability score for each prediction. The disclosed method is used for recommending tool configurations in a cylindrical grinding wheel process.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241210&DB=EPODOC&CC=US&NR=12165083B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241210&DB=EPODOC&CC=US&NR=12165083B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Das, Prasenjit</creatorcontrib><creatorcontrib>Basavarsu, Purushottham Gautham</creatorcontrib><creatorcontrib>Muhammed, Bilal</creatorcontrib><creatorcontrib>Pusuluri, Srimannarayana</creatorcontrib><creatorcontrib>Sharma, Sunil</creatorcontrib><title>Method and system for recommending tool configurations in machining</title><description>This disclosure relates generally to recommending tool configurations in machining. The machining tool configuration selection involves the selection of several tool specification parameters concerning the material, geometry and composition of the machining tool. The state-of-the-art methods uses a rule and knowledge-based system to select tool configuration, however these methods do not recommend tool configurations which satisfy customer requirement. Embodiments of the present disclosure uses a hierarchical model which is trained to predict acceptable tool specification parameters for a given requirement by learning the patterns from past tool selection data. Further a probabilistic approach is used to predict the top set of recommendations of tool configurations with a probability score for each prediction. The disclosed method is used for recommending tool configurations in a cylindrical grinding wheel process.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHD2TS3JyE9RSMxLUSiuLC5JzVVIyy9SKEpNzs_NTc1LycxLVyjJz89RSM7PS8tMLy1KLMnMzytWyMxTyE1MzsjMAyrgYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGRoZmpgYWxk5GxsSoAQCnQjL4</recordid><startdate>20241210</startdate><enddate>20241210</enddate><creator>Das, Prasenjit</creator><creator>Basavarsu, Purushottham Gautham</creator><creator>Muhammed, Bilal</creator><creator>Pusuluri, Srimannarayana</creator><creator>Sharma, Sunil</creator><scope>EVB</scope></search><sort><creationdate>20241210</creationdate><title>Method and system for recommending tool configurations in machining</title><author>Das, Prasenjit ; Basavarsu, Purushottham Gautham ; Muhammed, Bilal ; Pusuluri, Srimannarayana ; Sharma, Sunil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US12165083B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Das, Prasenjit</creatorcontrib><creatorcontrib>Basavarsu, Purushottham Gautham</creatorcontrib><creatorcontrib>Muhammed, Bilal</creatorcontrib><creatorcontrib>Pusuluri, Srimannarayana</creatorcontrib><creatorcontrib>Sharma, Sunil</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Das, Prasenjit</au><au>Basavarsu, Purushottham Gautham</au><au>Muhammed, Bilal</au><au>Pusuluri, Srimannarayana</au><au>Sharma, Sunil</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method and system for recommending tool configurations in machining</title><date>2024-12-10</date><risdate>2024</risdate><abstract>This disclosure relates generally to recommending tool configurations in machining. The machining tool configuration selection involves the selection of several tool specification parameters concerning the material, geometry and composition of the machining tool. The state-of-the-art methods uses a rule and knowledge-based system to select tool configuration, however these methods do not recommend tool configurations which satisfy customer requirement. Embodiments of the present disclosure uses a hierarchical model which is trained to predict acceptable tool specification parameters for a given requirement by learning the patterns from past tool selection data. Further a probabilistic approach is used to predict the top set of recommendations of tool configurations with a probability score for each prediction. The disclosed method is used for recommending tool configurations in a cylindrical grinding wheel process.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US12165083B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | Method and system for recommending tool configurations in machining |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A04%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Das,%20Prasenjit&rft.date=2024-12-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS12165083B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |