Method and system for recommending tool configurations in machining

This disclosure relates generally to recommending tool configurations in machining. The machining tool configuration selection involves the selection of several tool specification parameters concerning the material, geometry and composition of the machining tool. The state-of-the-art methods uses a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Das, Prasenjit, Basavarsu, Purushottham Gautham, Muhammed, Bilal, Pusuluri, Srimannarayana, Sharma, Sunil
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Das, Prasenjit
Basavarsu, Purushottham Gautham
Muhammed, Bilal
Pusuluri, Srimannarayana
Sharma, Sunil
description This disclosure relates generally to recommending tool configurations in machining. The machining tool configuration selection involves the selection of several tool specification parameters concerning the material, geometry and composition of the machining tool. The state-of-the-art methods uses a rule and knowledge-based system to select tool configuration, however these methods do not recommend tool configurations which satisfy customer requirement. Embodiments of the present disclosure uses a hierarchical model which is trained to predict acceptable tool specification parameters for a given requirement by learning the patterns from past tool selection data. Further a probabilistic approach is used to predict the top set of recommendations of tool configurations with a probability score for each prediction. The disclosed method is used for recommending tool configurations in a cylindrical grinding wheel process.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US12165083B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US12165083B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US12165083B23</originalsourceid><addsrcrecordid>eNrjZHD2TS3JyE9RSMxLUSiuLC5JzVVIyy9SKEpNzs_NTc1LycxLVyjJz89RSM7PS8tMLy1KLMnMzytWyMxTyE1MzsjMAyrgYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGRoZmpgYWxk5GxsSoAQCnQjL4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method and system for recommending tool configurations in machining</title><source>esp@cenet</source><creator>Das, Prasenjit ; Basavarsu, Purushottham Gautham ; Muhammed, Bilal ; Pusuluri, Srimannarayana ; Sharma, Sunil</creator><creatorcontrib>Das, Prasenjit ; Basavarsu, Purushottham Gautham ; Muhammed, Bilal ; Pusuluri, Srimannarayana ; Sharma, Sunil</creatorcontrib><description>This disclosure relates generally to recommending tool configurations in machining. The machining tool configuration selection involves the selection of several tool specification parameters concerning the material, geometry and composition of the machining tool. The state-of-the-art methods uses a rule and knowledge-based system to select tool configuration, however these methods do not recommend tool configurations which satisfy customer requirement. Embodiments of the present disclosure uses a hierarchical model which is trained to predict acceptable tool specification parameters for a given requirement by learning the patterns from past tool selection data. Further a probabilistic approach is used to predict the top set of recommendations of tool configurations with a probability score for each prediction. The disclosed method is used for recommending tool configurations in a cylindrical grinding wheel process.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241210&amp;DB=EPODOC&amp;CC=US&amp;NR=12165083B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241210&amp;DB=EPODOC&amp;CC=US&amp;NR=12165083B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Das, Prasenjit</creatorcontrib><creatorcontrib>Basavarsu, Purushottham Gautham</creatorcontrib><creatorcontrib>Muhammed, Bilal</creatorcontrib><creatorcontrib>Pusuluri, Srimannarayana</creatorcontrib><creatorcontrib>Sharma, Sunil</creatorcontrib><title>Method and system for recommending tool configurations in machining</title><description>This disclosure relates generally to recommending tool configurations in machining. The machining tool configuration selection involves the selection of several tool specification parameters concerning the material, geometry and composition of the machining tool. The state-of-the-art methods uses a rule and knowledge-based system to select tool configuration, however these methods do not recommend tool configurations which satisfy customer requirement. Embodiments of the present disclosure uses a hierarchical model which is trained to predict acceptable tool specification parameters for a given requirement by learning the patterns from past tool selection data. Further a probabilistic approach is used to predict the top set of recommendations of tool configurations with a probability score for each prediction. The disclosed method is used for recommending tool configurations in a cylindrical grinding wheel process.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHD2TS3JyE9RSMxLUSiuLC5JzVVIyy9SKEpNzs_NTc1LycxLVyjJz89RSM7PS8tMLy1KLMnMzytWyMxTyE1MzsjMAyrgYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGRoZmpgYWxk5GxsSoAQCnQjL4</recordid><startdate>20241210</startdate><enddate>20241210</enddate><creator>Das, Prasenjit</creator><creator>Basavarsu, Purushottham Gautham</creator><creator>Muhammed, Bilal</creator><creator>Pusuluri, Srimannarayana</creator><creator>Sharma, Sunil</creator><scope>EVB</scope></search><sort><creationdate>20241210</creationdate><title>Method and system for recommending tool configurations in machining</title><author>Das, Prasenjit ; Basavarsu, Purushottham Gautham ; Muhammed, Bilal ; Pusuluri, Srimannarayana ; Sharma, Sunil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US12165083B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Das, Prasenjit</creatorcontrib><creatorcontrib>Basavarsu, Purushottham Gautham</creatorcontrib><creatorcontrib>Muhammed, Bilal</creatorcontrib><creatorcontrib>Pusuluri, Srimannarayana</creatorcontrib><creatorcontrib>Sharma, Sunil</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Das, Prasenjit</au><au>Basavarsu, Purushottham Gautham</au><au>Muhammed, Bilal</au><au>Pusuluri, Srimannarayana</au><au>Sharma, Sunil</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method and system for recommending tool configurations in machining</title><date>2024-12-10</date><risdate>2024</risdate><abstract>This disclosure relates generally to recommending tool configurations in machining. The machining tool configuration selection involves the selection of several tool specification parameters concerning the material, geometry and composition of the machining tool. The state-of-the-art methods uses a rule and knowledge-based system to select tool configuration, however these methods do not recommend tool configurations which satisfy customer requirement. Embodiments of the present disclosure uses a hierarchical model which is trained to predict acceptable tool specification parameters for a given requirement by learning the patterns from past tool selection data. Further a probabilistic approach is used to predict the top set of recommendations of tool configurations with a probability score for each prediction. The disclosed method is used for recommending tool configurations in a cylindrical grinding wheel process.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US12165083B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Method and system for recommending tool configurations in machining
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A04%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Das,%20Prasenjit&rft.date=2024-12-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS12165083B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true