Predictive process control for a manufacturing process
Aspects of the disclosed technology encompass the use of a deep-learning controller for monitoring and improving a manufacturing process. In some aspects, a method of the disclosed technology includes steps for: receiving control values associated with a process station in a manufacturing process, p...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Pinskiy, Vadim Limoge, Damas Putman, John B Putman, Matthew C |
description | Aspects of the disclosed technology encompass the use of a deep-learning controller for monitoring and improving a manufacturing process. In some aspects, a method of the disclosed technology includes steps for: receiving control values associated with a process station in a manufacturing process, predicting an expected value for an article of manufacture output from the process station, and determining if the deep-learning controller can control the manufacturing process based on the expected value. Systems and computer-readable media are also provided. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US12153412B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US12153412B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US12153412B23</originalsourceid><addsrcrecordid>eNrjZDALKEpNyUwuySxLVSgoyk9OLS5WSM7PKynKz1FIyy9SSFTITcwrTUtMLiktysxLh6nhYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGRoamxiaGRk5GxsSoAQDXiy4h</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Predictive process control for a manufacturing process</title><source>esp@cenet</source><creator>Pinskiy, Vadim ; Limoge, Damas ; Putman, John B ; Putman, Matthew C</creator><creatorcontrib>Pinskiy, Vadim ; Limoge, Damas ; Putman, John B ; Putman, Matthew C</creatorcontrib><description>Aspects of the disclosed technology encompass the use of a deep-learning controller for monitoring and improving a manufacturing process. In some aspects, a method of the disclosed technology includes steps for: receiving control values associated with a process station in a manufacturing process, predicting an expected value for an article of manufacture output from the process station, and determining if the deep-learning controller can control the manufacturing process based on the expected value. Systems and computer-readable media are also provided.</description><language>eng</language><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL ; CONTROLLING ; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS ; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS ; PHYSICS ; REGULATING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241126&DB=EPODOC&CC=US&NR=12153412B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241126&DB=EPODOC&CC=US&NR=12153412B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Pinskiy, Vadim</creatorcontrib><creatorcontrib>Limoge, Damas</creatorcontrib><creatorcontrib>Putman, John B</creatorcontrib><creatorcontrib>Putman, Matthew C</creatorcontrib><title>Predictive process control for a manufacturing process</title><description>Aspects of the disclosed technology encompass the use of a deep-learning controller for monitoring and improving a manufacturing process. In some aspects, a method of the disclosed technology includes steps for: receiving control values associated with a process station in a manufacturing process, predicting an expected value for an article of manufacture output from the process station, and determining if the deep-learning controller can control the manufacturing process based on the expected value. Systems and computer-readable media are also provided.</description><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL</subject><subject>CONTROLLING</subject><subject>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</subject><subject>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</subject><subject>PHYSICS</subject><subject>REGULATING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDALKEpNyUwuySxLVSgoyk9OLS5WSM7PKynKz1FIyy9SSFTITcwrTUtMLiktysxLh6nhYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGRoamxiaGRk5GxsSoAQDXiy4h</recordid><startdate>20241126</startdate><enddate>20241126</enddate><creator>Pinskiy, Vadim</creator><creator>Limoge, Damas</creator><creator>Putman, John B</creator><creator>Putman, Matthew C</creator><scope>EVB</scope></search><sort><creationdate>20241126</creationdate><title>Predictive process control for a manufacturing process</title><author>Pinskiy, Vadim ; Limoge, Damas ; Putman, John B ; Putman, Matthew C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US12153412B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CONTROL OR REGULATING SYSTEMS IN GENERAL</topic><topic>CONTROLLING</topic><topic>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</topic><topic>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</topic><topic>PHYSICS</topic><topic>REGULATING</topic><toplevel>online_resources</toplevel><creatorcontrib>Pinskiy, Vadim</creatorcontrib><creatorcontrib>Limoge, Damas</creatorcontrib><creatorcontrib>Putman, John B</creatorcontrib><creatorcontrib>Putman, Matthew C</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pinskiy, Vadim</au><au>Limoge, Damas</au><au>Putman, John B</au><au>Putman, Matthew C</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Predictive process control for a manufacturing process</title><date>2024-11-26</date><risdate>2024</risdate><abstract>Aspects of the disclosed technology encompass the use of a deep-learning controller for monitoring and improving a manufacturing process. In some aspects, a method of the disclosed technology includes steps for: receiving control values associated with a process station in a manufacturing process, predicting an expected value for an article of manufacture output from the process station, and determining if the deep-learning controller can control the manufacturing process based on the expected value. Systems and computer-readable media are also provided.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US12153412B2 |
source | esp@cenet |
subjects | CONTROL OR REGULATING SYSTEMS IN GENERAL CONTROLLING FUNCTIONAL ELEMENTS OF SUCH SYSTEMS MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS PHYSICS REGULATING |
title | Predictive process control for a manufacturing process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A23%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Pinskiy,%20Vadim&rft.date=2024-11-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS12153412B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |