Systems and methods for data grafting to enhance model robustness

An example method includes detecting, by context analysis circuitry, occurrence of a triggering condition. The example method also includes scheduling, by context analysis circuitry and based on the occurrence of the triggering condition, retraining of a model. The example method also includes gener...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ketharaju, Rameshchandra Bhaskar, Case, Tyler, Hord, Matt, Davis, Paul, Venkataraman, Vinothkumar, Kendapadi, Ananth, Yang, Yang Angelina, Yeri, Naveen Gururaja, Verma, Ashutosh
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Ketharaju, Rameshchandra Bhaskar
Case, Tyler
Hord, Matt
Davis, Paul
Venkataraman, Vinothkumar
Kendapadi, Ananth
Yang, Yang Angelina
Yeri, Naveen Gururaja
Verma, Ashutosh
description An example method includes detecting, by context analysis circuitry, occurrence of a triggering condition. The example method also includes scheduling, by context analysis circuitry and based on the occurrence of the triggering condition, retraining of a model. The example method also includes generating, by data grafting circuitry and in response to scheduling the retraining of the model, a context-relevant training data set based on a target context vector. The example method also includes retraining, by model training circuitry, the model using the context-relevant training data set to mitigate deterioration of performance of the model.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US12147498B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US12147498B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US12147498B13</originalsourceid><addsrcrecordid>eNqNyjEOwjAMBdAsDAi4gzkAQ6ASdAQEYi_MlWl-WqTGqWIzcHsWDsD0ljd3x-ajhqTEEijBhhyUYi4U2Jj6wtFe0pNlggwsHSjlgJFKfr7VBKpLN4s8KlY_F259vdzPtw2m3EIn7iCw9tH4ra_2VX04-d0_5wsKWDHy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Systems and methods for data grafting to enhance model robustness</title><source>esp@cenet</source><creator>Ketharaju, Rameshchandra Bhaskar ; Case, Tyler ; Hord, Matt ; Davis, Paul ; Venkataraman, Vinothkumar ; Kendapadi, Ananth ; Yang, Yang Angelina ; Yeri, Naveen Gururaja ; Verma, Ashutosh</creator><creatorcontrib>Ketharaju, Rameshchandra Bhaskar ; Case, Tyler ; Hord, Matt ; Davis, Paul ; Venkataraman, Vinothkumar ; Kendapadi, Ananth ; Yang, Yang Angelina ; Yeri, Naveen Gururaja ; Verma, Ashutosh</creatorcontrib><description>An example method includes detecting, by context analysis circuitry, occurrence of a triggering condition. The example method also includes scheduling, by context analysis circuitry and based on the occurrence of the triggering condition, retraining of a model. The example method also includes generating, by data grafting circuitry and in response to scheduling the retraining of the model, a context-relevant training data set based on a target context vector. The example method also includes retraining, by model training circuitry, the model using the context-relevant training data set to mitigate deterioration of performance of the model.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241119&amp;DB=EPODOC&amp;CC=US&amp;NR=12147498B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241119&amp;DB=EPODOC&amp;CC=US&amp;NR=12147498B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Ketharaju, Rameshchandra Bhaskar</creatorcontrib><creatorcontrib>Case, Tyler</creatorcontrib><creatorcontrib>Hord, Matt</creatorcontrib><creatorcontrib>Davis, Paul</creatorcontrib><creatorcontrib>Venkataraman, Vinothkumar</creatorcontrib><creatorcontrib>Kendapadi, Ananth</creatorcontrib><creatorcontrib>Yang, Yang Angelina</creatorcontrib><creatorcontrib>Yeri, Naveen Gururaja</creatorcontrib><creatorcontrib>Verma, Ashutosh</creatorcontrib><title>Systems and methods for data grafting to enhance model robustness</title><description>An example method includes detecting, by context analysis circuitry, occurrence of a triggering condition. The example method also includes scheduling, by context analysis circuitry and based on the occurrence of the triggering condition, retraining of a model. The example method also includes generating, by data grafting circuitry and in response to scheduling the retraining of the model, a context-relevant training data set based on a target context vector. The example method also includes retraining, by model training circuitry, the model using the context-relevant training data set to mitigate deterioration of performance of the model.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEOwjAMBdAsDAi4gzkAQ6ASdAQEYi_MlWl-WqTGqWIzcHsWDsD0ljd3x-ajhqTEEijBhhyUYi4U2Jj6wtFe0pNlggwsHSjlgJFKfr7VBKpLN4s8KlY_F259vdzPtw2m3EIn7iCw9tH4ra_2VX04-d0_5wsKWDHy</recordid><startdate>20241119</startdate><enddate>20241119</enddate><creator>Ketharaju, Rameshchandra Bhaskar</creator><creator>Case, Tyler</creator><creator>Hord, Matt</creator><creator>Davis, Paul</creator><creator>Venkataraman, Vinothkumar</creator><creator>Kendapadi, Ananth</creator><creator>Yang, Yang Angelina</creator><creator>Yeri, Naveen Gururaja</creator><creator>Verma, Ashutosh</creator><scope>EVB</scope></search><sort><creationdate>20241119</creationdate><title>Systems and methods for data grafting to enhance model robustness</title><author>Ketharaju, Rameshchandra Bhaskar ; Case, Tyler ; Hord, Matt ; Davis, Paul ; Venkataraman, Vinothkumar ; Kendapadi, Ananth ; Yang, Yang Angelina ; Yeri, Naveen Gururaja ; Verma, Ashutosh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US12147498B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Ketharaju, Rameshchandra Bhaskar</creatorcontrib><creatorcontrib>Case, Tyler</creatorcontrib><creatorcontrib>Hord, Matt</creatorcontrib><creatorcontrib>Davis, Paul</creatorcontrib><creatorcontrib>Venkataraman, Vinothkumar</creatorcontrib><creatorcontrib>Kendapadi, Ananth</creatorcontrib><creatorcontrib>Yang, Yang Angelina</creatorcontrib><creatorcontrib>Yeri, Naveen Gururaja</creatorcontrib><creatorcontrib>Verma, Ashutosh</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ketharaju, Rameshchandra Bhaskar</au><au>Case, Tyler</au><au>Hord, Matt</au><au>Davis, Paul</au><au>Venkataraman, Vinothkumar</au><au>Kendapadi, Ananth</au><au>Yang, Yang Angelina</au><au>Yeri, Naveen Gururaja</au><au>Verma, Ashutosh</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Systems and methods for data grafting to enhance model robustness</title><date>2024-11-19</date><risdate>2024</risdate><abstract>An example method includes detecting, by context analysis circuitry, occurrence of a triggering condition. The example method also includes scheduling, by context analysis circuitry and based on the occurrence of the triggering condition, retraining of a model. The example method also includes generating, by data grafting circuitry and in response to scheduling the retraining of the model, a context-relevant training data set based on a target context vector. The example method also includes retraining, by model training circuitry, the model using the context-relevant training data set to mitigate deterioration of performance of the model.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US12147498B1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Systems and methods for data grafting to enhance model robustness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A49%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Ketharaju,%20Rameshchandra%20Bhaskar&rft.date=2024-11-19&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS12147498B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true