Machine learning generation of low-noise and high structural conspicuity images
Systems/techniques that facilitate machine learning generation of low-noise and high structural conspicuity images are provided. In various embodiments, a system can access an image and can apply at least one of image denoising or image resolution enhancement to the image, thereby yielding a first i...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Imai, Yasuhiro Das, Bipul Langoju, Rajesh Veera Venkata Lakshmi Agrawal, Utkarsh Shigemasa, Risa Hsieh, Jiang |
description | Systems/techniques that facilitate machine learning generation of low-noise and high structural conspicuity images are provided. In various embodiments, a system can access an image and can apply at least one of image denoising or image resolution enhancement to the image, thereby yielding a first intermediary image. In various instances, the system can generate, via execution of a plurality of machine learning models, a plurality of second intermediary images based on the first intermediary image, wherein a given machine learning model in the plurality of machine learning models receives as input the first intermediary image, wherein the given machine learning model produces as output a given second intermediary image in the plurality of second intermediary images, and wherein the given second intermediary image represents a kernel-transformed version of the first intermediary image. In various cases, the system can generate a blended image based on the plurality of second intermediary images. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US12141900B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US12141900B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US12141900B23</originalsourceid><addsrcrecordid>eNqNzD0KAjEQQOFtLES9w3iAhc1qY7ui2IiFWi9DnE0G4kzID-LttfAAVq_5ePPmckbrWQgCYRIWB46EEhZWAZ0g6KsV5UyA8gDPzkMuqdpSEwawKjmyrVzewE90lJfNbMKQafXrolkfD7f9qaWoI-WI9rsv4_1qerM1u64b-s0_5gOBdzdt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Machine learning generation of low-noise and high structural conspicuity images</title><source>esp@cenet</source><creator>Imai, Yasuhiro ; Das, Bipul ; Langoju, Rajesh Veera Venkata Lakshmi ; Agrawal, Utkarsh ; Shigemasa, Risa ; Hsieh, Jiang</creator><creatorcontrib>Imai, Yasuhiro ; Das, Bipul ; Langoju, Rajesh Veera Venkata Lakshmi ; Agrawal, Utkarsh ; Shigemasa, Risa ; Hsieh, Jiang</creatorcontrib><description>Systems/techniques that facilitate machine learning generation of low-noise and high structural conspicuity images are provided. In various embodiments, a system can access an image and can apply at least one of image denoising or image resolution enhancement to the image, thereby yielding a first intermediary image. In various instances, the system can generate, via execution of a plurality of machine learning models, a plurality of second intermediary images based on the first intermediary image, wherein a given machine learning model in the plurality of machine learning models receives as input the first intermediary image, wherein the given machine learning model produces as output a given second intermediary image in the plurality of second intermediary images, and wherein the given second intermediary image represents a kernel-transformed version of the first intermediary image. In various cases, the system can generate a blended image based on the plurality of second intermediary images.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241112&DB=EPODOC&CC=US&NR=12141900B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241112&DB=EPODOC&CC=US&NR=12141900B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Imai, Yasuhiro</creatorcontrib><creatorcontrib>Das, Bipul</creatorcontrib><creatorcontrib>Langoju, Rajesh Veera Venkata Lakshmi</creatorcontrib><creatorcontrib>Agrawal, Utkarsh</creatorcontrib><creatorcontrib>Shigemasa, Risa</creatorcontrib><creatorcontrib>Hsieh, Jiang</creatorcontrib><title>Machine learning generation of low-noise and high structural conspicuity images</title><description>Systems/techniques that facilitate machine learning generation of low-noise and high structural conspicuity images are provided. In various embodiments, a system can access an image and can apply at least one of image denoising or image resolution enhancement to the image, thereby yielding a first intermediary image. In various instances, the system can generate, via execution of a plurality of machine learning models, a plurality of second intermediary images based on the first intermediary image, wherein a given machine learning model in the plurality of machine learning models receives as input the first intermediary image, wherein the given machine learning model produces as output a given second intermediary image in the plurality of second intermediary images, and wherein the given second intermediary image represents a kernel-transformed version of the first intermediary image. In various cases, the system can generate a blended image based on the plurality of second intermediary images.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzD0KAjEQQOFtLES9w3iAhc1qY7ui2IiFWi9DnE0G4kzID-LttfAAVq_5ePPmckbrWQgCYRIWB46EEhZWAZ0g6KsV5UyA8gDPzkMuqdpSEwawKjmyrVzewE90lJfNbMKQafXrolkfD7f9qaWoI-WI9rsv4_1qerM1u64b-s0_5gOBdzdt</recordid><startdate>20241112</startdate><enddate>20241112</enddate><creator>Imai, Yasuhiro</creator><creator>Das, Bipul</creator><creator>Langoju, Rajesh Veera Venkata Lakshmi</creator><creator>Agrawal, Utkarsh</creator><creator>Shigemasa, Risa</creator><creator>Hsieh, Jiang</creator><scope>EVB</scope></search><sort><creationdate>20241112</creationdate><title>Machine learning generation of low-noise and high structural conspicuity images</title><author>Imai, Yasuhiro ; Das, Bipul ; Langoju, Rajesh Veera Venkata Lakshmi ; Agrawal, Utkarsh ; Shigemasa, Risa ; Hsieh, Jiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US12141900B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Imai, Yasuhiro</creatorcontrib><creatorcontrib>Das, Bipul</creatorcontrib><creatorcontrib>Langoju, Rajesh Veera Venkata Lakshmi</creatorcontrib><creatorcontrib>Agrawal, Utkarsh</creatorcontrib><creatorcontrib>Shigemasa, Risa</creatorcontrib><creatorcontrib>Hsieh, Jiang</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Imai, Yasuhiro</au><au>Das, Bipul</au><au>Langoju, Rajesh Veera Venkata Lakshmi</au><au>Agrawal, Utkarsh</au><au>Shigemasa, Risa</au><au>Hsieh, Jiang</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Machine learning generation of low-noise and high structural conspicuity images</title><date>2024-11-12</date><risdate>2024</risdate><abstract>Systems/techniques that facilitate machine learning generation of low-noise and high structural conspicuity images are provided. In various embodiments, a system can access an image and can apply at least one of image denoising or image resolution enhancement to the image, thereby yielding a first intermediary image. In various instances, the system can generate, via execution of a plurality of machine learning models, a plurality of second intermediary images based on the first intermediary image, wherein a given machine learning model in the plurality of machine learning models receives as input the first intermediary image, wherein the given machine learning model produces as output a given second intermediary image in the plurality of second intermediary images, and wherein the given second intermediary image represents a kernel-transformed version of the first intermediary image. In various cases, the system can generate a blended image based on the plurality of second intermediary images.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US12141900B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | Machine learning generation of low-noise and high structural conspicuity images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T06%3A48%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Imai,%20Yasuhiro&rft.date=2024-11-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS12141900B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |