Machine learning systems for automated database element processing and prediction output generation
A computer system includes memory hardware configured to store a machine learning model, historical feature vector inputs, and computer-executable instructions, and processor hardware configured to execute the instructions. The instructions include training a first machine learning model with the hi...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Lee, Yee Wah Eva Maharana, Sourav Bhosrekar, Yogendra D Shaw, Margaret A Chudzik, Robert E Swain, Stephanie C Wong, Man Hin Lam, Man Tat Fogarty, David J |
description | A computer system includes memory hardware configured to store a machine learning model, historical feature vector inputs, and computer-executable instructions, and processor hardware configured to execute the instructions. The instructions include training a first machine learning model with the historical feature vector inputs to generate a title score output, and training a second machine learning model with the historical feature vector inputs to generate a background score output. For each entity in a set, the instructions include processing a title feature vector input with the first machine learning model, and processing a background feature vector with a second machine learning model, to generate a tittle score output and a background score output each indicative of a likelihood that the entity is a decision entity. The instructions include automatically distributing structured campaign data to the entity based on the title score output and the background score output. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US12125067B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US12125067B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US12125067B13</originalsourceid><addsrcrecordid>eNqNizEKwkAQRdNYiHqH8QCCUdReUWys1DqMuz9xIZlddiaFtzcBD2D1eY_3p4W7sXsHAbXgLEEa0o8aOqU6ZuLeYscGT56NX6wgtOggRilHB9XxweIHhA_OQhSKvaXeqIEg82jmxaTmVrH47axYXs6P03WFFCtoYjekVj3v5abc7Nb7w7Hc_tN8ARXPP5E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Machine learning systems for automated database element processing and prediction output generation</title><source>esp@cenet</source><creator>Lee, Yee Wah Eva ; Maharana, Sourav ; Bhosrekar, Yogendra D ; Shaw, Margaret A ; Chudzik, Robert E ; Swain, Stephanie C ; Wong, Man Hin ; Lam, Man Tat ; Fogarty, David J</creator><creatorcontrib>Lee, Yee Wah Eva ; Maharana, Sourav ; Bhosrekar, Yogendra D ; Shaw, Margaret A ; Chudzik, Robert E ; Swain, Stephanie C ; Wong, Man Hin ; Lam, Man Tat ; Fogarty, David J</creatorcontrib><description>A computer system includes memory hardware configured to store a machine learning model, historical feature vector inputs, and computer-executable instructions, and processor hardware configured to execute the instructions. The instructions include training a first machine learning model with the historical feature vector inputs to generate a title score output, and training a second machine learning model with the historical feature vector inputs to generate a background score output. For each entity in a set, the instructions include processing a title feature vector input with the first machine learning model, and processing a background feature vector with a second machine learning model, to generate a tittle score output and a background score output each indicative of a likelihood that the entity is a decision entity. The instructions include automatically distributing structured campaign data to the entity based on the title score output and the background score output.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241022&DB=EPODOC&CC=US&NR=12125067B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241022&DB=EPODOC&CC=US&NR=12125067B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Lee, Yee Wah Eva</creatorcontrib><creatorcontrib>Maharana, Sourav</creatorcontrib><creatorcontrib>Bhosrekar, Yogendra D</creatorcontrib><creatorcontrib>Shaw, Margaret A</creatorcontrib><creatorcontrib>Chudzik, Robert E</creatorcontrib><creatorcontrib>Swain, Stephanie C</creatorcontrib><creatorcontrib>Wong, Man Hin</creatorcontrib><creatorcontrib>Lam, Man Tat</creatorcontrib><creatorcontrib>Fogarty, David J</creatorcontrib><title>Machine learning systems for automated database element processing and prediction output generation</title><description>A computer system includes memory hardware configured to store a machine learning model, historical feature vector inputs, and computer-executable instructions, and processor hardware configured to execute the instructions. The instructions include training a first machine learning model with the historical feature vector inputs to generate a title score output, and training a second machine learning model with the historical feature vector inputs to generate a background score output. For each entity in a set, the instructions include processing a title feature vector input with the first machine learning model, and processing a background feature vector with a second machine learning model, to generate a tittle score output and a background score output each indicative of a likelihood that the entity is a decision entity. The instructions include automatically distributing structured campaign data to the entity based on the title score output and the background score output.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizEKwkAQRdNYiHqH8QCCUdReUWys1DqMuz9xIZlddiaFtzcBD2D1eY_3p4W7sXsHAbXgLEEa0o8aOqU6ZuLeYscGT56NX6wgtOggRilHB9XxweIHhA_OQhSKvaXeqIEg82jmxaTmVrH47axYXs6P03WFFCtoYjekVj3v5abc7Nb7w7Hc_tN8ARXPP5E</recordid><startdate>20241022</startdate><enddate>20241022</enddate><creator>Lee, Yee Wah Eva</creator><creator>Maharana, Sourav</creator><creator>Bhosrekar, Yogendra D</creator><creator>Shaw, Margaret A</creator><creator>Chudzik, Robert E</creator><creator>Swain, Stephanie C</creator><creator>Wong, Man Hin</creator><creator>Lam, Man Tat</creator><creator>Fogarty, David J</creator><scope>EVB</scope></search><sort><creationdate>20241022</creationdate><title>Machine learning systems for automated database element processing and prediction output generation</title><author>Lee, Yee Wah Eva ; Maharana, Sourav ; Bhosrekar, Yogendra D ; Shaw, Margaret A ; Chudzik, Robert E ; Swain, Stephanie C ; Wong, Man Hin ; Lam, Man Tat ; Fogarty, David J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US12125067B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Lee, Yee Wah Eva</creatorcontrib><creatorcontrib>Maharana, Sourav</creatorcontrib><creatorcontrib>Bhosrekar, Yogendra D</creatorcontrib><creatorcontrib>Shaw, Margaret A</creatorcontrib><creatorcontrib>Chudzik, Robert E</creatorcontrib><creatorcontrib>Swain, Stephanie C</creatorcontrib><creatorcontrib>Wong, Man Hin</creatorcontrib><creatorcontrib>Lam, Man Tat</creatorcontrib><creatorcontrib>Fogarty, David J</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Yee Wah Eva</au><au>Maharana, Sourav</au><au>Bhosrekar, Yogendra D</au><au>Shaw, Margaret A</au><au>Chudzik, Robert E</au><au>Swain, Stephanie C</au><au>Wong, Man Hin</au><au>Lam, Man Tat</au><au>Fogarty, David J</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Machine learning systems for automated database element processing and prediction output generation</title><date>2024-10-22</date><risdate>2024</risdate><abstract>A computer system includes memory hardware configured to store a machine learning model, historical feature vector inputs, and computer-executable instructions, and processor hardware configured to execute the instructions. The instructions include training a first machine learning model with the historical feature vector inputs to generate a title score output, and training a second machine learning model with the historical feature vector inputs to generate a background score output. For each entity in a set, the instructions include processing a title feature vector input with the first machine learning model, and processing a background feature vector with a second machine learning model, to generate a tittle score output and a background score output each indicative of a likelihood that the entity is a decision entity. The instructions include automatically distributing structured campaign data to the entity based on the title score output and the background score output.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US12125067B1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRIC DIGITAL DATA PROCESSING PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Machine learning systems for automated database element processing and prediction output generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T13%3A35%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Lee,%20Yee%20Wah%20Eva&rft.date=2024-10-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS12125067B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |