Machine learning systems for automated database element processing and prediction output generation

A computer system includes memory hardware configured to store a machine learning model, historical feature vector inputs, and computer-executable instructions, and processor hardware configured to execute the instructions. The instructions include training a first machine learning model with the hi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lee, Yee Wah Eva, Maharana, Sourav, Bhosrekar, Yogendra D, Shaw, Margaret A, Chudzik, Robert E, Swain, Stephanie C, Wong, Man Hin, Lam, Man Tat, Fogarty, David J
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Lee, Yee Wah Eva
Maharana, Sourav
Bhosrekar, Yogendra D
Shaw, Margaret A
Chudzik, Robert E
Swain, Stephanie C
Wong, Man Hin
Lam, Man Tat
Fogarty, David J
description A computer system includes memory hardware configured to store a machine learning model, historical feature vector inputs, and computer-executable instructions, and processor hardware configured to execute the instructions. The instructions include training a first machine learning model with the historical feature vector inputs to generate a title score output, and training a second machine learning model with the historical feature vector inputs to generate a background score output. For each entity in a set, the instructions include processing a title feature vector input with the first machine learning model, and processing a background feature vector with a second machine learning model, to generate a tittle score output and a background score output each indicative of a likelihood that the entity is a decision entity. The instructions include automatically distributing structured campaign data to the entity based on the title score output and the background score output.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US12125067B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US12125067B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US12125067B13</originalsourceid><addsrcrecordid>eNqNizEKwkAQRdNYiHqH8QCCUdReUWys1DqMuz9xIZlddiaFtzcBD2D1eY_3p4W7sXsHAbXgLEEa0o8aOqU6ZuLeYscGT56NX6wgtOggRilHB9XxweIHhA_OQhSKvaXeqIEg82jmxaTmVrH47axYXs6P03WFFCtoYjekVj3v5abc7Nb7w7Hc_tN8ARXPP5E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Machine learning systems for automated database element processing and prediction output generation</title><source>esp@cenet</source><creator>Lee, Yee Wah Eva ; Maharana, Sourav ; Bhosrekar, Yogendra D ; Shaw, Margaret A ; Chudzik, Robert E ; Swain, Stephanie C ; Wong, Man Hin ; Lam, Man Tat ; Fogarty, David J</creator><creatorcontrib>Lee, Yee Wah Eva ; Maharana, Sourav ; Bhosrekar, Yogendra D ; Shaw, Margaret A ; Chudzik, Robert E ; Swain, Stephanie C ; Wong, Man Hin ; Lam, Man Tat ; Fogarty, David J</creatorcontrib><description>A computer system includes memory hardware configured to store a machine learning model, historical feature vector inputs, and computer-executable instructions, and processor hardware configured to execute the instructions. The instructions include training a first machine learning model with the historical feature vector inputs to generate a title score output, and training a second machine learning model with the historical feature vector inputs to generate a background score output. For each entity in a set, the instructions include processing a title feature vector input with the first machine learning model, and processing a background feature vector with a second machine learning model, to generate a tittle score output and a background score output each indicative of a likelihood that the entity is a decision entity. The instructions include automatically distributing structured campaign data to the entity based on the title score output and the background score output.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241022&amp;DB=EPODOC&amp;CC=US&amp;NR=12125067B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241022&amp;DB=EPODOC&amp;CC=US&amp;NR=12125067B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Lee, Yee Wah Eva</creatorcontrib><creatorcontrib>Maharana, Sourav</creatorcontrib><creatorcontrib>Bhosrekar, Yogendra D</creatorcontrib><creatorcontrib>Shaw, Margaret A</creatorcontrib><creatorcontrib>Chudzik, Robert E</creatorcontrib><creatorcontrib>Swain, Stephanie C</creatorcontrib><creatorcontrib>Wong, Man Hin</creatorcontrib><creatorcontrib>Lam, Man Tat</creatorcontrib><creatorcontrib>Fogarty, David J</creatorcontrib><title>Machine learning systems for automated database element processing and prediction output generation</title><description>A computer system includes memory hardware configured to store a machine learning model, historical feature vector inputs, and computer-executable instructions, and processor hardware configured to execute the instructions. The instructions include training a first machine learning model with the historical feature vector inputs to generate a title score output, and training a second machine learning model with the historical feature vector inputs to generate a background score output. For each entity in a set, the instructions include processing a title feature vector input with the first machine learning model, and processing a background feature vector with a second machine learning model, to generate a tittle score output and a background score output each indicative of a likelihood that the entity is a decision entity. The instructions include automatically distributing structured campaign data to the entity based on the title score output and the background score output.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizEKwkAQRdNYiHqH8QCCUdReUWys1DqMuz9xIZlddiaFtzcBD2D1eY_3p4W7sXsHAbXgLEEa0o8aOqU6ZuLeYscGT56NX6wgtOggRilHB9XxweIHhA_OQhSKvaXeqIEg82jmxaTmVrH47axYXs6P03WFFCtoYjekVj3v5abc7Nb7w7Hc_tN8ARXPP5E</recordid><startdate>20241022</startdate><enddate>20241022</enddate><creator>Lee, Yee Wah Eva</creator><creator>Maharana, Sourav</creator><creator>Bhosrekar, Yogendra D</creator><creator>Shaw, Margaret A</creator><creator>Chudzik, Robert E</creator><creator>Swain, Stephanie C</creator><creator>Wong, Man Hin</creator><creator>Lam, Man Tat</creator><creator>Fogarty, David J</creator><scope>EVB</scope></search><sort><creationdate>20241022</creationdate><title>Machine learning systems for automated database element processing and prediction output generation</title><author>Lee, Yee Wah Eva ; Maharana, Sourav ; Bhosrekar, Yogendra D ; Shaw, Margaret A ; Chudzik, Robert E ; Swain, Stephanie C ; Wong, Man Hin ; Lam, Man Tat ; Fogarty, David J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US12125067B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Lee, Yee Wah Eva</creatorcontrib><creatorcontrib>Maharana, Sourav</creatorcontrib><creatorcontrib>Bhosrekar, Yogendra D</creatorcontrib><creatorcontrib>Shaw, Margaret A</creatorcontrib><creatorcontrib>Chudzik, Robert E</creatorcontrib><creatorcontrib>Swain, Stephanie C</creatorcontrib><creatorcontrib>Wong, Man Hin</creatorcontrib><creatorcontrib>Lam, Man Tat</creatorcontrib><creatorcontrib>Fogarty, David J</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Yee Wah Eva</au><au>Maharana, Sourav</au><au>Bhosrekar, Yogendra D</au><au>Shaw, Margaret A</au><au>Chudzik, Robert E</au><au>Swain, Stephanie C</au><au>Wong, Man Hin</au><au>Lam, Man Tat</au><au>Fogarty, David J</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Machine learning systems for automated database element processing and prediction output generation</title><date>2024-10-22</date><risdate>2024</risdate><abstract>A computer system includes memory hardware configured to store a machine learning model, historical feature vector inputs, and computer-executable instructions, and processor hardware configured to execute the instructions. The instructions include training a first machine learning model with the historical feature vector inputs to generate a title score output, and training a second machine learning model with the historical feature vector inputs to generate a background score output. For each entity in a set, the instructions include processing a title feature vector input with the first machine learning model, and processing a background feature vector with a second machine learning model, to generate a tittle score output and a background score output each indicative of a likelihood that the entity is a decision entity. The instructions include automatically distributing structured campaign data to the entity based on the title score output and the background score output.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US12125067B1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Machine learning systems for automated database element processing and prediction output generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T13%3A35%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Lee,%20Yee%20Wah%20Eva&rft.date=2024-10-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS12125067B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true