Artefact reduction in magnetic resonance imaging

Techniques of prospectively compensating for motion of a subject being imaged by an MRI system, the MRI system comprising a plurality of magnetics components including at least one gradient coil and at least one radio-frequency (RF) coil, the techniques comprising: obtaining first spatial frequency...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lazarus, Carole, O'Halloran, Rafael, Dyvorne, Hadrien A
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Lazarus, Carole
O'Halloran, Rafael
Dyvorne, Hadrien A
description Techniques of prospectively compensating for motion of a subject being imaged by an MRI system, the MRI system comprising a plurality of magnetics components including at least one gradient coil and at least one radio-frequency (RF) coil, the techniques comprising: obtaining first spatial frequency data and second spatial frequency data by operating the MRI system in accordance with a pulse sequence, wherein the pulse sequence is associated with a sampling path that includes at least two non-contiguous portions each for sampling a central region of k-space; determining a transformation using a first image obtained using the first spatial frequency data and a second image obtained using the second spatial frequency data; correcting the pulse sequence using the determined transformation to obtain a corrected pulse sequence; and obtaining additional spatial frequency data in accordance with the corrected pulse sequence.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US12105175B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US12105175B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US12105175B23</originalsourceid><addsrcrecordid>eNrjZDBwLCpJTUtMLlEoSk0pTS7JzM9TyMxTyE1Mz0styUwGihbn5yXmJacqZALFMvPSeRhY0xJzilN5oTQ3g6Kba4izh25qQX58anFBYnIqUGd8aLChkaGBqaG5qZORMTFqAHElK4c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Artefact reduction in magnetic resonance imaging</title><source>esp@cenet</source><creator>Lazarus, Carole ; O'Halloran, Rafael ; Dyvorne, Hadrien A</creator><creatorcontrib>Lazarus, Carole ; O'Halloran, Rafael ; Dyvorne, Hadrien A</creatorcontrib><description>Techniques of prospectively compensating for motion of a subject being imaged by an MRI system, the MRI system comprising a plurality of magnetics components including at least one gradient coil and at least one radio-frequency (RF) coil, the techniques comprising: obtaining first spatial frequency data and second spatial frequency data by operating the MRI system in accordance with a pulse sequence, wherein the pulse sequence is associated with a sampling path that includes at least two non-contiguous portions each for sampling a central region of k-space; determining a transformation using a first image obtained using the first spatial frequency data and a second image obtained using the second spatial frequency data; correcting the pulse sequence using the determined transformation to obtain a corrected pulse sequence; and obtaining additional spatial frequency data in accordance with the corrected pulse sequence.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; MEASURING ; MEASURING ELECTRIC VARIABLES ; MEASURING MAGNETIC VARIABLES ; PHYSICS ; TESTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241001&amp;DB=EPODOC&amp;CC=US&amp;NR=12105175B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20241001&amp;DB=EPODOC&amp;CC=US&amp;NR=12105175B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Lazarus, Carole</creatorcontrib><creatorcontrib>O'Halloran, Rafael</creatorcontrib><creatorcontrib>Dyvorne, Hadrien A</creatorcontrib><title>Artefact reduction in magnetic resonance imaging</title><description>Techniques of prospectively compensating for motion of a subject being imaged by an MRI system, the MRI system comprising a plurality of magnetics components including at least one gradient coil and at least one radio-frequency (RF) coil, the techniques comprising: obtaining first spatial frequency data and second spatial frequency data by operating the MRI system in accordance with a pulse sequence, wherein the pulse sequence is associated with a sampling path that includes at least two non-contiguous portions each for sampling a central region of k-space; determining a transformation using a first image obtained using the first spatial frequency data and a second image obtained using the second spatial frequency data; correcting the pulse sequence using the determined transformation to obtain a corrected pulse sequence; and obtaining additional spatial frequency data in accordance with the corrected pulse sequence.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>MEASURING</subject><subject>MEASURING ELECTRIC VARIABLES</subject><subject>MEASURING MAGNETIC VARIABLES</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDBwLCpJTUtMLlEoSk0pTS7JzM9TyMxTyE1Mz0styUwGihbn5yXmJacqZALFMvPSeRhY0xJzilN5oTQ3g6Kba4izh25qQX58anFBYnIqUGd8aLChkaGBqaG5qZORMTFqAHElK4c</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Lazarus, Carole</creator><creator>O'Halloran, Rafael</creator><creator>Dyvorne, Hadrien A</creator><scope>EVB</scope></search><sort><creationdate>20241001</creationdate><title>Artefact reduction in magnetic resonance imaging</title><author>Lazarus, Carole ; O'Halloran, Rafael ; Dyvorne, Hadrien A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US12105175B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>MEASURING</topic><topic>MEASURING ELECTRIC VARIABLES</topic><topic>MEASURING MAGNETIC VARIABLES</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>Lazarus, Carole</creatorcontrib><creatorcontrib>O'Halloran, Rafael</creatorcontrib><creatorcontrib>Dyvorne, Hadrien A</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lazarus, Carole</au><au>O'Halloran, Rafael</au><au>Dyvorne, Hadrien A</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Artefact reduction in magnetic resonance imaging</title><date>2024-10-01</date><risdate>2024</risdate><abstract>Techniques of prospectively compensating for motion of a subject being imaged by an MRI system, the MRI system comprising a plurality of magnetics components including at least one gradient coil and at least one radio-frequency (RF) coil, the techniques comprising: obtaining first spatial frequency data and second spatial frequency data by operating the MRI system in accordance with a pulse sequence, wherein the pulse sequence is associated with a sampling path that includes at least two non-contiguous portions each for sampling a central region of k-space; determining a transformation using a first image obtained using the first spatial frequency data and a second image obtained using the second spatial frequency data; correcting the pulse sequence using the determined transformation to obtain a corrected pulse sequence; and obtaining additional spatial frequency data in accordance with the corrected pulse sequence.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US12105175B2
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
MEASURING
MEASURING ELECTRIC VARIABLES
MEASURING MAGNETIC VARIABLES
PHYSICS
TESTING
title Artefact reduction in magnetic resonance imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A01%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Lazarus,%20Carole&rft.date=2024-10-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS12105175B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true