Image compression using normalizing flows

According to one implementation, an image compression system includes a computing platform having a hardware processor and a system memory storing a software code. The hardware processor executes the software code to receive an input image, transform the input image to a latent space representation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Helminger, Leonhard Markus, Xue, Yuanyi, Schroers, Christopher Richard, McPhillen, Jared, Djelouah, Abdelaziz, Doggett, Erika Varis, Labrozzi, Scott
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Helminger, Leonhard Markus
Xue, Yuanyi
Schroers, Christopher Richard
McPhillen, Jared
Djelouah, Abdelaziz
Doggett, Erika Varis
Labrozzi, Scott
description According to one implementation, an image compression system includes a computing platform having a hardware processor and a system memory storing a software code. The hardware processor executes the software code to receive an input image, transform the input image to a latent space representation of the input image, and quantize the latent space representation of the input image to produce multiple quantized latents. The hardware processor further executes the software code to encode the quantized latents using a probability density function of the latent space representation of the input image, to generate a bitstream, and convert the bitstream into an output image corresponding to the input image. The probability density function of the latent space representation of the input image is obtained based on a normalizing flow mapping of one of the input image or the latent space representation of the input image.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US12087024B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US12087024B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US12087024B23</originalsourceid><addsrcrecordid>eNrjZND0zE1MT1VIzs8tKEotLs7Mz1MoLc7MS1fIyy_KTczJrAKx03Lyy4t5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicmpeakl8aLChkYGFuYGRiZORMTFqADPtKUQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Image compression using normalizing flows</title><source>esp@cenet</source><creator>Helminger, Leonhard Markus ; Xue, Yuanyi ; Schroers, Christopher Richard ; McPhillen, Jared ; Djelouah, Abdelaziz ; Doggett, Erika Varis ; Labrozzi, Scott</creator><creatorcontrib>Helminger, Leonhard Markus ; Xue, Yuanyi ; Schroers, Christopher Richard ; McPhillen, Jared ; Djelouah, Abdelaziz ; Doggett, Erika Varis ; Labrozzi, Scott</creatorcontrib><description>According to one implementation, an image compression system includes a computing platform having a hardware processor and a system memory storing a software code. The hardware processor executes the software code to receive an input image, transform the input image to a latent space representation of the input image, and quantize the latent space representation of the input image to produce multiple quantized latents. The hardware processor further executes the software code to encode the quantized latents using a probability density function of the latent space representation of the input image, to generate a bitstream, and convert the bitstream into an output image corresponding to the input image. The probability density function of the latent space representation of the input image is obtained based on a normalizing flow mapping of one of the input image or the latent space representation of the input image.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PICTORIAL COMMUNICATION, e.g. TELEVISION</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240910&amp;DB=EPODOC&amp;CC=US&amp;NR=12087024B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240910&amp;DB=EPODOC&amp;CC=US&amp;NR=12087024B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Helminger, Leonhard Markus</creatorcontrib><creatorcontrib>Xue, Yuanyi</creatorcontrib><creatorcontrib>Schroers, Christopher Richard</creatorcontrib><creatorcontrib>McPhillen, Jared</creatorcontrib><creatorcontrib>Djelouah, Abdelaziz</creatorcontrib><creatorcontrib>Doggett, Erika Varis</creatorcontrib><creatorcontrib>Labrozzi, Scott</creatorcontrib><title>Image compression using normalizing flows</title><description>According to one implementation, an image compression system includes a computing platform having a hardware processor and a system memory storing a software code. The hardware processor executes the software code to receive an input image, transform the input image to a latent space representation of the input image, and quantize the latent space representation of the input image to produce multiple quantized latents. The hardware processor further executes the software code to encode the quantized latents using a probability density function of the latent space representation of the input image, to generate a bitstream, and convert the bitstream into an output image corresponding to the input image. The probability density function of the latent space representation of the input image is obtained based on a normalizing flow mapping of one of the input image or the latent space representation of the input image.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PICTORIAL COMMUNICATION, e.g. TELEVISION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZND0zE1MT1VIzs8tKEotLs7Mz1MoLc7MS1fIyy_KTczJrAKx03Lyy4t5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicmpeakl8aLChkYGFuYGRiZORMTFqADPtKUQ</recordid><startdate>20240910</startdate><enddate>20240910</enddate><creator>Helminger, Leonhard Markus</creator><creator>Xue, Yuanyi</creator><creator>Schroers, Christopher Richard</creator><creator>McPhillen, Jared</creator><creator>Djelouah, Abdelaziz</creator><creator>Doggett, Erika Varis</creator><creator>Labrozzi, Scott</creator><scope>EVB</scope></search><sort><creationdate>20240910</creationdate><title>Image compression using normalizing flows</title><author>Helminger, Leonhard Markus ; Xue, Yuanyi ; Schroers, Christopher Richard ; McPhillen, Jared ; Djelouah, Abdelaziz ; Doggett, Erika Varis ; Labrozzi, Scott</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US12087024B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PICTORIAL COMMUNICATION, e.g. TELEVISION</topic><toplevel>online_resources</toplevel><creatorcontrib>Helminger, Leonhard Markus</creatorcontrib><creatorcontrib>Xue, Yuanyi</creatorcontrib><creatorcontrib>Schroers, Christopher Richard</creatorcontrib><creatorcontrib>McPhillen, Jared</creatorcontrib><creatorcontrib>Djelouah, Abdelaziz</creatorcontrib><creatorcontrib>Doggett, Erika Varis</creatorcontrib><creatorcontrib>Labrozzi, Scott</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Helminger, Leonhard Markus</au><au>Xue, Yuanyi</au><au>Schroers, Christopher Richard</au><au>McPhillen, Jared</au><au>Djelouah, Abdelaziz</au><au>Doggett, Erika Varis</au><au>Labrozzi, Scott</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Image compression using normalizing flows</title><date>2024-09-10</date><risdate>2024</risdate><abstract>According to one implementation, an image compression system includes a computing platform having a hardware processor and a system memory storing a software code. The hardware processor executes the software code to receive an input image, transform the input image to a latent space representation of the input image, and quantize the latent space representation of the input image to produce multiple quantized latents. The hardware processor further executes the software code to encode the quantized latents using a probability density function of the latent space representation of the input image, to generate a bitstream, and convert the bitstream into an output image corresponding to the input image. The probability density function of the latent space representation of the input image is obtained based on a normalizing flow mapping of one of the input image or the latent space representation of the input image.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US12087024B2
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
PICTORIAL COMMUNICATION, e.g. TELEVISION
title Image compression using normalizing flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A12%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Helminger,%20Leonhard%20Markus&rft.date=2024-09-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS12087024B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true