Image compression using normalizing flows
According to one implementation, an image compression system includes a computing platform having a hardware processor and a system memory storing a software code. The hardware processor executes the software code to receive an input image, transform the input image to a latent space representation...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Helminger, Leonhard Markus Xue, Yuanyi Schroers, Christopher Richard McPhillen, Jared Djelouah, Abdelaziz Doggett, Erika Varis Labrozzi, Scott |
description | According to one implementation, an image compression system includes a computing platform having a hardware processor and a system memory storing a software code. The hardware processor executes the software code to receive an input image, transform the input image to a latent space representation of the input image, and quantize the latent space representation of the input image to produce multiple quantized latents. The hardware processor further executes the software code to encode the quantized latents using a probability density function of the latent space representation of the input image, to generate a bitstream, and convert the bitstream into an output image corresponding to the input image. The probability density function of the latent space representation of the input image is obtained based on a normalizing flow mapping of one of the input image or the latent space representation of the input image. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US12087024B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US12087024B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US12087024B23</originalsourceid><addsrcrecordid>eNrjZND0zE1MT1VIzs8tKEotLs7Mz1MoLc7MS1fIyy_KTczJrAKx03Lyy4t5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicmpeakl8aLChkYGFuYGRiZORMTFqADPtKUQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Image compression using normalizing flows</title><source>esp@cenet</source><creator>Helminger, Leonhard Markus ; Xue, Yuanyi ; Schroers, Christopher Richard ; McPhillen, Jared ; Djelouah, Abdelaziz ; Doggett, Erika Varis ; Labrozzi, Scott</creator><creatorcontrib>Helminger, Leonhard Markus ; Xue, Yuanyi ; Schroers, Christopher Richard ; McPhillen, Jared ; Djelouah, Abdelaziz ; Doggett, Erika Varis ; Labrozzi, Scott</creatorcontrib><description>According to one implementation, an image compression system includes a computing platform having a hardware processor and a system memory storing a software code. The hardware processor executes the software code to receive an input image, transform the input image to a latent space representation of the input image, and quantize the latent space representation of the input image to produce multiple quantized latents. The hardware processor further executes the software code to encode the quantized latents using a probability density function of the latent space representation of the input image, to generate a bitstream, and convert the bitstream into an output image corresponding to the input image. The probability density function of the latent space representation of the input image is obtained based on a normalizing flow mapping of one of the input image or the latent space representation of the input image.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PICTORIAL COMMUNICATION, e.g. TELEVISION</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240910&DB=EPODOC&CC=US&NR=12087024B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240910&DB=EPODOC&CC=US&NR=12087024B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Helminger, Leonhard Markus</creatorcontrib><creatorcontrib>Xue, Yuanyi</creatorcontrib><creatorcontrib>Schroers, Christopher Richard</creatorcontrib><creatorcontrib>McPhillen, Jared</creatorcontrib><creatorcontrib>Djelouah, Abdelaziz</creatorcontrib><creatorcontrib>Doggett, Erika Varis</creatorcontrib><creatorcontrib>Labrozzi, Scott</creatorcontrib><title>Image compression using normalizing flows</title><description>According to one implementation, an image compression system includes a computing platform having a hardware processor and a system memory storing a software code. The hardware processor executes the software code to receive an input image, transform the input image to a latent space representation of the input image, and quantize the latent space representation of the input image to produce multiple quantized latents. The hardware processor further executes the software code to encode the quantized latents using a probability density function of the latent space representation of the input image, to generate a bitstream, and convert the bitstream into an output image corresponding to the input image. The probability density function of the latent space representation of the input image is obtained based on a normalizing flow mapping of one of the input image or the latent space representation of the input image.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PICTORIAL COMMUNICATION, e.g. TELEVISION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZND0zE1MT1VIzs8tKEotLs7Mz1MoLc7MS1fIyy_KTczJrAKx03Lyy4t5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicmpeakl8aLChkYGFuYGRiZORMTFqADPtKUQ</recordid><startdate>20240910</startdate><enddate>20240910</enddate><creator>Helminger, Leonhard Markus</creator><creator>Xue, Yuanyi</creator><creator>Schroers, Christopher Richard</creator><creator>McPhillen, Jared</creator><creator>Djelouah, Abdelaziz</creator><creator>Doggett, Erika Varis</creator><creator>Labrozzi, Scott</creator><scope>EVB</scope></search><sort><creationdate>20240910</creationdate><title>Image compression using normalizing flows</title><author>Helminger, Leonhard Markus ; Xue, Yuanyi ; Schroers, Christopher Richard ; McPhillen, Jared ; Djelouah, Abdelaziz ; Doggett, Erika Varis ; Labrozzi, Scott</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US12087024B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PICTORIAL COMMUNICATION, e.g. TELEVISION</topic><toplevel>online_resources</toplevel><creatorcontrib>Helminger, Leonhard Markus</creatorcontrib><creatorcontrib>Xue, Yuanyi</creatorcontrib><creatorcontrib>Schroers, Christopher Richard</creatorcontrib><creatorcontrib>McPhillen, Jared</creatorcontrib><creatorcontrib>Djelouah, Abdelaziz</creatorcontrib><creatorcontrib>Doggett, Erika Varis</creatorcontrib><creatorcontrib>Labrozzi, Scott</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Helminger, Leonhard Markus</au><au>Xue, Yuanyi</au><au>Schroers, Christopher Richard</au><au>McPhillen, Jared</au><au>Djelouah, Abdelaziz</au><au>Doggett, Erika Varis</au><au>Labrozzi, Scott</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Image compression using normalizing flows</title><date>2024-09-10</date><risdate>2024</risdate><abstract>According to one implementation, an image compression system includes a computing platform having a hardware processor and a system memory storing a software code. The hardware processor executes the software code to receive an input image, transform the input image to a latent space representation of the input image, and quantize the latent space representation of the input image to produce multiple quantized latents. The hardware processor further executes the software code to encode the quantized latents using a probability density function of the latent space representation of the input image, to generate a bitstream, and convert the bitstream into an output image corresponding to the input image. The probability density function of the latent space representation of the input image is obtained based on a normalizing flow mapping of one of the input image or the latent space representation of the input image.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US12087024B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC COMMUNICATION TECHNIQUE ELECTRICITY IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS PICTORIAL COMMUNICATION, e.g. TELEVISION |
title | Image compression using normalizing flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A12%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Helminger,%20Leonhard%20Markus&rft.date=2024-09-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS12087024B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |