Software defined neural network layer pipelining
Embodiments herein describe techniques for expressing the layers of a neural network in a software model. In one embodiment, the software model includes a class that describes the various functional blocks (e.g., convolution units, max-pooling units, rectified linear units (ReLU), and scaling functi...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Zejda, Jindrich Wu, Yongjun Delaye, Elliott Sirasao, Ashish |
description | Embodiments herein describe techniques for expressing the layers of a neural network in a software model. In one embodiment, the software model includes a class that describes the various functional blocks (e.g., convolution units, max-pooling units, rectified linear units (ReLU), and scaling functions) used to execute the neural network layers. In turn, other classes in the software model can describe the operation of each of the functional blocks. In addition, the software model can include conditional logic for expressing how the data flows between the functional blocks since different layers in the neural network can process the data differently. A compiler can convert the high-level code in the software model (e.g., C++) into a hardware description language (e.g., register transfer level (RTL)) which is used to configure a hardware system to implement a neural network accelerator. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US12086572B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US12086572B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US12086572B13</originalsourceid><addsrcrecordid>eNrjZDAIzk8rKU8sSlVISU3LzEtNUchLLS1KzAFSJeX5RdkKOYmVqUUKBZkFqTmZeZl56TwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5Fag1PjTY0MjAwszU3MjJ0JgYNQCP6Cve</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Software defined neural network layer pipelining</title><source>esp@cenet</source><creator>Zejda, Jindrich ; Wu, Yongjun ; Delaye, Elliott ; Sirasao, Ashish</creator><creatorcontrib>Zejda, Jindrich ; Wu, Yongjun ; Delaye, Elliott ; Sirasao, Ashish</creatorcontrib><description>Embodiments herein describe techniques for expressing the layers of a neural network in a software model. In one embodiment, the software model includes a class that describes the various functional blocks (e.g., convolution units, max-pooling units, rectified linear units (ReLU), and scaling functions) used to execute the neural network layers. In turn, other classes in the software model can describe the operation of each of the functional blocks. In addition, the software model can include conditional logic for expressing how the data flows between the functional blocks since different layers in the neural network can process the data differently. A compiler can convert the high-level code in the software model (e.g., C++) into a hardware description language (e.g., register transfer level (RTL)) which is used to configure a hardware system to implement a neural network accelerator.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240910&DB=EPODOC&CC=US&NR=12086572B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240910&DB=EPODOC&CC=US&NR=12086572B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Zejda, Jindrich</creatorcontrib><creatorcontrib>Wu, Yongjun</creatorcontrib><creatorcontrib>Delaye, Elliott</creatorcontrib><creatorcontrib>Sirasao, Ashish</creatorcontrib><title>Software defined neural network layer pipelining</title><description>Embodiments herein describe techniques for expressing the layers of a neural network in a software model. In one embodiment, the software model includes a class that describes the various functional blocks (e.g., convolution units, max-pooling units, rectified linear units (ReLU), and scaling functions) used to execute the neural network layers. In turn, other classes in the software model can describe the operation of each of the functional blocks. In addition, the software model can include conditional logic for expressing how the data flows between the functional blocks since different layers in the neural network can process the data differently. A compiler can convert the high-level code in the software model (e.g., C++) into a hardware description language (e.g., register transfer level (RTL)) which is used to configure a hardware system to implement a neural network accelerator.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDAIzk8rKU8sSlVISU3LzEtNUchLLS1KzAFSJeX5RdkKOYmVqUUKBZkFqTmZeZl56TwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5Fag1PjTY0MjAwszU3MjJ0JgYNQCP6Cve</recordid><startdate>20240910</startdate><enddate>20240910</enddate><creator>Zejda, Jindrich</creator><creator>Wu, Yongjun</creator><creator>Delaye, Elliott</creator><creator>Sirasao, Ashish</creator><scope>EVB</scope></search><sort><creationdate>20240910</creationdate><title>Software defined neural network layer pipelining</title><author>Zejda, Jindrich ; Wu, Yongjun ; Delaye, Elliott ; Sirasao, Ashish</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US12086572B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Zejda, Jindrich</creatorcontrib><creatorcontrib>Wu, Yongjun</creatorcontrib><creatorcontrib>Delaye, Elliott</creatorcontrib><creatorcontrib>Sirasao, Ashish</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zejda, Jindrich</au><au>Wu, Yongjun</au><au>Delaye, Elliott</au><au>Sirasao, Ashish</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Software defined neural network layer pipelining</title><date>2024-09-10</date><risdate>2024</risdate><abstract>Embodiments herein describe techniques for expressing the layers of a neural network in a software model. In one embodiment, the software model includes a class that describes the various functional blocks (e.g., convolution units, max-pooling units, rectified linear units (ReLU), and scaling functions) used to execute the neural network layers. In turn, other classes in the software model can describe the operation of each of the functional blocks. In addition, the software model can include conditional logic for expressing how the data flows between the functional blocks since different layers in the neural network can process the data differently. A compiler can convert the high-level code in the software model (e.g., C++) into a hardware description language (e.g., register transfer level (RTL)) which is used to configure a hardware system to implement a neural network accelerator.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US12086572B1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Software defined neural network layer pipelining |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A44%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Zejda,%20Jindrich&rft.date=2024-09-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS12086572B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |