Software defined neural network layer pipelining

Embodiments herein describe techniques for expressing the layers of a neural network in a software model. In one embodiment, the software model includes a class that describes the various functional blocks (e.g., convolution units, max-pooling units, rectified linear units (ReLU), and scaling functi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zejda, Jindrich, Wu, Yongjun, Delaye, Elliott, Sirasao, Ashish
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Zejda, Jindrich
Wu, Yongjun
Delaye, Elliott
Sirasao, Ashish
description Embodiments herein describe techniques for expressing the layers of a neural network in a software model. In one embodiment, the software model includes a class that describes the various functional blocks (e.g., convolution units, max-pooling units, rectified linear units (ReLU), and scaling functions) used to execute the neural network layers. In turn, other classes in the software model can describe the operation of each of the functional blocks. In addition, the software model can include conditional logic for expressing how the data flows between the functional blocks since different layers in the neural network can process the data differently. A compiler can convert the high-level code in the software model (e.g., C++) into a hardware description language (e.g., register transfer level (RTL)) which is used to configure a hardware system to implement a neural network accelerator.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US12086572B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US12086572B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US12086572B13</originalsourceid><addsrcrecordid>eNrjZDAIzk8rKU8sSlVISU3LzEtNUchLLS1KzAFSJeX5RdkKOYmVqUUKBZkFqTmZeZl56TwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5Fag1PjTY0MjAwszU3MjJ0JgYNQCP6Cve</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Software defined neural network layer pipelining</title><source>esp@cenet</source><creator>Zejda, Jindrich ; Wu, Yongjun ; Delaye, Elliott ; Sirasao, Ashish</creator><creatorcontrib>Zejda, Jindrich ; Wu, Yongjun ; Delaye, Elliott ; Sirasao, Ashish</creatorcontrib><description>Embodiments herein describe techniques for expressing the layers of a neural network in a software model. In one embodiment, the software model includes a class that describes the various functional blocks (e.g., convolution units, max-pooling units, rectified linear units (ReLU), and scaling functions) used to execute the neural network layers. In turn, other classes in the software model can describe the operation of each of the functional blocks. In addition, the software model can include conditional logic for expressing how the data flows between the functional blocks since different layers in the neural network can process the data differently. A compiler can convert the high-level code in the software model (e.g., C++) into a hardware description language (e.g., register transfer level (RTL)) which is used to configure a hardware system to implement a neural network accelerator.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240910&amp;DB=EPODOC&amp;CC=US&amp;NR=12086572B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240910&amp;DB=EPODOC&amp;CC=US&amp;NR=12086572B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Zejda, Jindrich</creatorcontrib><creatorcontrib>Wu, Yongjun</creatorcontrib><creatorcontrib>Delaye, Elliott</creatorcontrib><creatorcontrib>Sirasao, Ashish</creatorcontrib><title>Software defined neural network layer pipelining</title><description>Embodiments herein describe techniques for expressing the layers of a neural network in a software model. In one embodiment, the software model includes a class that describes the various functional blocks (e.g., convolution units, max-pooling units, rectified linear units (ReLU), and scaling functions) used to execute the neural network layers. In turn, other classes in the software model can describe the operation of each of the functional blocks. In addition, the software model can include conditional logic for expressing how the data flows between the functional blocks since different layers in the neural network can process the data differently. A compiler can convert the high-level code in the software model (e.g., C++) into a hardware description language (e.g., register transfer level (RTL)) which is used to configure a hardware system to implement a neural network accelerator.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDAIzk8rKU8sSlVISU3LzEtNUchLLS1KzAFSJeX5RdkKOYmVqUUKBZkFqTmZeZl56TwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5Fag1PjTY0MjAwszU3MjJ0JgYNQCP6Cve</recordid><startdate>20240910</startdate><enddate>20240910</enddate><creator>Zejda, Jindrich</creator><creator>Wu, Yongjun</creator><creator>Delaye, Elliott</creator><creator>Sirasao, Ashish</creator><scope>EVB</scope></search><sort><creationdate>20240910</creationdate><title>Software defined neural network layer pipelining</title><author>Zejda, Jindrich ; Wu, Yongjun ; Delaye, Elliott ; Sirasao, Ashish</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US12086572B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Zejda, Jindrich</creatorcontrib><creatorcontrib>Wu, Yongjun</creatorcontrib><creatorcontrib>Delaye, Elliott</creatorcontrib><creatorcontrib>Sirasao, Ashish</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zejda, Jindrich</au><au>Wu, Yongjun</au><au>Delaye, Elliott</au><au>Sirasao, Ashish</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Software defined neural network layer pipelining</title><date>2024-09-10</date><risdate>2024</risdate><abstract>Embodiments herein describe techniques for expressing the layers of a neural network in a software model. In one embodiment, the software model includes a class that describes the various functional blocks (e.g., convolution units, max-pooling units, rectified linear units (ReLU), and scaling functions) used to execute the neural network layers. In turn, other classes in the software model can describe the operation of each of the functional blocks. In addition, the software model can include conditional logic for expressing how the data flows between the functional blocks since different layers in the neural network can process the data differently. A compiler can convert the high-level code in the software model (e.g., C++) into a hardware description language (e.g., register transfer level (RTL)) which is used to configure a hardware system to implement a neural network accelerator.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US12086572B1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Software defined neural network layer pipelining
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A44%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Zejda,%20Jindrich&rft.date=2024-09-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS12086572B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true