Table item information extraction with continuous machine learning through local and global models

A bipartite application implements a table auto-completion (TAC) algorithm on the client side and the server side. A client module runs a local model of the TAC algorithm on a user device and a server module runs a global model of the TAC algorithm on a server machine. The local model is continuousl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hammann, Gisela Barbara Cäcilie, Middendorf, Matthias Theodor, Peust, Carsten
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Hammann, Gisela Barbara Cäcilie
Middendorf, Matthias Theodor
Peust, Carsten
description A bipartite application implements a table auto-completion (TAC) algorithm on the client side and the server side. A client module runs a local model of the TAC algorithm on a user device and a server module runs a global model of the TAC algorithm on a server machine. The local model is continuously adapted through on-the-fly training, with as few as one negative example, to perform TAC on the client side, one document at a time. Knowledge thus learned by the local model is used to improve the global model on the server side. The global model can be utilized to automatically and intelligently extract table information from a large number of documents with significantly improved accuracy, requiring minimal human intervention even on complex tables.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US12080091B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US12080091B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US12080091B23</originalsourceid><addsrcrecordid>eNqNyjEOwjAMQNEuDAi4gzkAUlsWWEEgdspcuanbWErsKnEFxwchDsD03_CXRddgFwjYKALLoCmisQrQyxK6L59sHpyKscw6Z4joPAtBIEzCMoL5pPPoIajDACg9jEG7D6P2FPK6WAwYMm1-XRXb66U533Y0aUt5QkdC1j7uVV0eyvJYner9P88buH4-0Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Table item information extraction with continuous machine learning through local and global models</title><source>esp@cenet</source><creator>Hammann, Gisela Barbara Cäcilie ; Middendorf, Matthias Theodor ; Peust, Carsten</creator><creatorcontrib>Hammann, Gisela Barbara Cäcilie ; Middendorf, Matthias Theodor ; Peust, Carsten</creatorcontrib><description>A bipartite application implements a table auto-completion (TAC) algorithm on the client side and the server side. A client module runs a local model of the TAC algorithm on a user device and a server module runs a global model of the TAC algorithm on a server machine. The local model is continuously adapted through on-the-fly training, with as few as one negative example, to perform TAC on the client side, one document at a time. Knowledge thus learned by the local model is used to improve the global model on the server side. The global model can be utilized to automatically and intelligently extract table information from a large number of documents with significantly improved accuracy, requiring minimal human intervention even on complex tables.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240903&amp;DB=EPODOC&amp;CC=US&amp;NR=12080091B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240903&amp;DB=EPODOC&amp;CC=US&amp;NR=12080091B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Hammann, Gisela Barbara Cäcilie</creatorcontrib><creatorcontrib>Middendorf, Matthias Theodor</creatorcontrib><creatorcontrib>Peust, Carsten</creatorcontrib><title>Table item information extraction with continuous machine learning through local and global models</title><description>A bipartite application implements a table auto-completion (TAC) algorithm on the client side and the server side. A client module runs a local model of the TAC algorithm on a user device and a server module runs a global model of the TAC algorithm on a server machine. The local model is continuously adapted through on-the-fly training, with as few as one negative example, to perform TAC on the client side, one document at a time. Knowledge thus learned by the local model is used to improve the global model on the server side. The global model can be utilized to automatically and intelligently extract table information from a large number of documents with significantly improved accuracy, requiring minimal human intervention even on complex tables.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEOwjAMQNEuDAi4gzkAUlsWWEEgdspcuanbWErsKnEFxwchDsD03_CXRddgFwjYKALLoCmisQrQyxK6L59sHpyKscw6Z4joPAtBIEzCMoL5pPPoIajDACg9jEG7D6P2FPK6WAwYMm1-XRXb66U533Y0aUt5QkdC1j7uVV0eyvJYner9P88buH4-0Q</recordid><startdate>20240903</startdate><enddate>20240903</enddate><creator>Hammann, Gisela Barbara Cäcilie</creator><creator>Middendorf, Matthias Theodor</creator><creator>Peust, Carsten</creator><scope>EVB</scope></search><sort><creationdate>20240903</creationdate><title>Table item information extraction with continuous machine learning through local and global models</title><author>Hammann, Gisela Barbara Cäcilie ; Middendorf, Matthias Theodor ; Peust, Carsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US12080091B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Hammann, Gisela Barbara Cäcilie</creatorcontrib><creatorcontrib>Middendorf, Matthias Theodor</creatorcontrib><creatorcontrib>Peust, Carsten</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hammann, Gisela Barbara Cäcilie</au><au>Middendorf, Matthias Theodor</au><au>Peust, Carsten</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Table item information extraction with continuous machine learning through local and global models</title><date>2024-09-03</date><risdate>2024</risdate><abstract>A bipartite application implements a table auto-completion (TAC) algorithm on the client side and the server side. A client module runs a local model of the TAC algorithm on a user device and a server module runs a global model of the TAC algorithm on a server machine. The local model is continuously adapted through on-the-fly training, with as few as one negative example, to perform TAC on the client side, one document at a time. Knowledge thus learned by the local model is used to improve the global model on the server side. The global model can be utilized to automatically and intelligently extract table information from a large number of documents with significantly improved accuracy, requiring minimal human intervention even on complex tables.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US12080091B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Table item information extraction with continuous machine learning through local and global models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T21%3A09%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Hammann,%20Gisela%20Barbara%20C%C3%A4cilie&rft.date=2024-09-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS12080091B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true