Self-supervised 3D keypoint learning for monocular visual odometry
A method for learning depth-aware keypoints and associated descriptors from monocular video for monocular visual odometry is described. The method includes training a keypoint network and a depth network to learn depth-aware keypoints and the associated descriptors. The training is based on a target...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Pillai, Sudeep Guizilini, Vitor Ambrus, Rares A Tang, Jiexiong Gaidon, Adrien David Kim, Hanme |
description | A method for learning depth-aware keypoints and associated descriptors from monocular video for monocular visual odometry is described. The method includes training a keypoint network and a depth network to learn depth-aware keypoints and the associated descriptors. The training is based on a target image and a context image from successive images of the monocular video. The method also includes lifting 2D keypoints from the target image to learn 3D keypoints based on a learned depth map from the depth network. The method further includes estimating a trajectory of an ego-vehicle based on the learned 3D keypoints. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US12073580B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US12073580B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US12073580B23</originalsourceid><addsrcrecordid>eNrjZHAKTs1J0y0uLUgtKsssTk1RMHZRyE6tLMjPzCtRyElNLMrLzEtXSMsvUsjNz8tPLs1JLFIAKixNzFHIT8nPTS0pquRhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfGhwYZGBubGphYGTkbGxKgBAGFIMoo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Self-supervised 3D keypoint learning for monocular visual odometry</title><source>esp@cenet</source><creator>Pillai, Sudeep ; Guizilini, Vitor ; Ambrus, Rares A ; Tang, Jiexiong ; Gaidon, Adrien David ; Kim, Hanme</creator><creatorcontrib>Pillai, Sudeep ; Guizilini, Vitor ; Ambrus, Rares A ; Tang, Jiexiong ; Gaidon, Adrien David ; Kim, Hanme</creatorcontrib><description>A method for learning depth-aware keypoints and associated descriptors from monocular video for monocular visual odometry is described. The method includes training a keypoint network and a depth network to learn depth-aware keypoints and the associated descriptors. The training is based on a target image and a context image from successive images of the monocular video. The method also includes lifting 2D keypoints from the target image to learn 3D keypoints based on a learned depth map from the depth network. The method further includes estimating a trajectory of an ego-vehicle based on the learned 3D keypoints.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE ORDIFFERENT FUNCTION ; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PERFORMING OPERATIONS ; PHYSICS ; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TOTHE CONTROL OF A PARTICULAR SUB-UNIT ; TRANSPORTING ; VEHICLES IN GENERAL</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240827&DB=EPODOC&CC=US&NR=12073580B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240827&DB=EPODOC&CC=US&NR=12073580B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Pillai, Sudeep</creatorcontrib><creatorcontrib>Guizilini, Vitor</creatorcontrib><creatorcontrib>Ambrus, Rares A</creatorcontrib><creatorcontrib>Tang, Jiexiong</creatorcontrib><creatorcontrib>Gaidon, Adrien David</creatorcontrib><creatorcontrib>Kim, Hanme</creatorcontrib><title>Self-supervised 3D keypoint learning for monocular visual odometry</title><description>A method for learning depth-aware keypoints and associated descriptors from monocular video for monocular visual odometry is described. The method includes training a keypoint network and a depth network to learn depth-aware keypoints and the associated descriptors. The training is based on a target image and a context image from successive images of the monocular video. The method also includes lifting 2D keypoints from the target image to learn 3D keypoints based on a learned depth map from the depth network. The method further includes estimating a trajectory of an ego-vehicle based on the learned 3D keypoints.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE ORDIFFERENT FUNCTION</subject><subject>CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PERFORMING OPERATIONS</subject><subject>PHYSICS</subject><subject>ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TOTHE CONTROL OF A PARTICULAR SUB-UNIT</subject><subject>TRANSPORTING</subject><subject>VEHICLES IN GENERAL</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHAKTs1J0y0uLUgtKsssTk1RMHZRyE6tLMjPzCtRyElNLMrLzEtXSMsvUsjNz8tPLs1JLFIAKixNzFHIT8nPTS0pquRhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfGhwYZGBubGphYGTkbGxKgBAGFIMoo</recordid><startdate>20240827</startdate><enddate>20240827</enddate><creator>Pillai, Sudeep</creator><creator>Guizilini, Vitor</creator><creator>Ambrus, Rares A</creator><creator>Tang, Jiexiong</creator><creator>Gaidon, Adrien David</creator><creator>Kim, Hanme</creator><scope>EVB</scope></search><sort><creationdate>20240827</creationdate><title>Self-supervised 3D keypoint learning for monocular visual odometry</title><author>Pillai, Sudeep ; Guizilini, Vitor ; Ambrus, Rares A ; Tang, Jiexiong ; Gaidon, Adrien David ; Kim, Hanme</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US12073580B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE ORDIFFERENT FUNCTION</topic><topic>CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PERFORMING OPERATIONS</topic><topic>PHYSICS</topic><topic>ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TOTHE CONTROL OF A PARTICULAR SUB-UNIT</topic><topic>TRANSPORTING</topic><topic>VEHICLES IN GENERAL</topic><toplevel>online_resources</toplevel><creatorcontrib>Pillai, Sudeep</creatorcontrib><creatorcontrib>Guizilini, Vitor</creatorcontrib><creatorcontrib>Ambrus, Rares A</creatorcontrib><creatorcontrib>Tang, Jiexiong</creatorcontrib><creatorcontrib>Gaidon, Adrien David</creatorcontrib><creatorcontrib>Kim, Hanme</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pillai, Sudeep</au><au>Guizilini, Vitor</au><au>Ambrus, Rares A</au><au>Tang, Jiexiong</au><au>Gaidon, Adrien David</au><au>Kim, Hanme</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Self-supervised 3D keypoint learning for monocular visual odometry</title><date>2024-08-27</date><risdate>2024</risdate><abstract>A method for learning depth-aware keypoints and associated descriptors from monocular video for monocular visual odometry is described. The method includes training a keypoint network and a depth network to learn depth-aware keypoints and the associated descriptors. The training is based on a target image and a context image from successive images of the monocular video. The method also includes lifting 2D keypoints from the target image to learn 3D keypoints based on a learned depth map from the depth network. The method further includes estimating a trajectory of an ego-vehicle based on the learned 3D keypoints.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US12073580B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE ORDIFFERENT FUNCTION CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PERFORMING OPERATIONS PHYSICS ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TOTHE CONTROL OF A PARTICULAR SUB-UNIT TRANSPORTING VEHICLES IN GENERAL |
title | Self-supervised 3D keypoint learning for monocular visual odometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A12%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Pillai,%20Sudeep&rft.date=2024-08-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS12073580B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |