Machine learning-based power capping and virtual machine placement in cloud platforms
Systems and methods for machine learning-based power capping and virtual machine placement in cloud platforms are disclosed. A method includes applying a machine learning model to predict whether a request for deployment of a virtual machine corresponds to deployment of a user-facing (UF) virtual ma...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Fontoura, Marcus F Manousakis, Ioannis Bianchini, Ricardo G Mahalingam, Nithish Kumbhare, Alok Gautam Azimi, Reza |
description | Systems and methods for machine learning-based power capping and virtual machine placement in cloud platforms are disclosed. A method includes applying a machine learning model to predict whether a request for deployment of a virtual machine corresponds to deployment of a user-facing (UF) virtual machine or a non-user-facing (NUF) virtual machine. The method further includes sorting a list of candidate servers based on both a chassis score and a server score for each server to determine a ranked list of the candidate servers, where the server score depends at least on whether the request for the deployment of the virtual machine is determined to be a request for a deployment of a UF virtual machine or a request for a deployment of an NUF virtual machine. The method further includes deploying the virtual machine to a server with highest rank among the ranked list of the candidate servers. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US12072749B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US12072749B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US12072749B23</originalsourceid><addsrcrecordid>eNqNi0EKwjAQAHPxIOof1gcUNArFq6J48aQ9lzXZ1kCyWZJUv2-FPsDTwDAzV80NzcsxgSdM7LivnpjJgsQPJTAoMjpAtvB2qQzoIUyDeDQUiAs4BuPjYH-qdDGFvFSzDn2m1cSFWl_Oj9O1IoktZRlPptI2963e1LreH45690_zBeYWOX4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Machine learning-based power capping and virtual machine placement in cloud platforms</title><source>esp@cenet</source><creator>Fontoura, Marcus F ; Manousakis, Ioannis ; Bianchini, Ricardo G ; Mahalingam, Nithish ; Kumbhare, Alok Gautam ; Azimi, Reza</creator><creatorcontrib>Fontoura, Marcus F ; Manousakis, Ioannis ; Bianchini, Ricardo G ; Mahalingam, Nithish ; Kumbhare, Alok Gautam ; Azimi, Reza</creatorcontrib><description>Systems and methods for machine learning-based power capping and virtual machine placement in cloud platforms are disclosed. A method includes applying a machine learning model to predict whether a request for deployment of a virtual machine corresponds to deployment of a user-facing (UF) virtual machine or a non-user-facing (NUF) virtual machine. The method further includes sorting a list of candidate servers based on both a chassis score and a server score for each server to determine a ranked list of the candidate servers, where the server score depends at least on whether the request for the deployment of the virtual machine is determined to be a request for a deployment of a UF virtual machine or a request for a deployment of an NUF virtual machine. The method further includes deploying the virtual machine to a server with highest rank among the ranked list of the candidate servers.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240827&DB=EPODOC&CC=US&NR=12072749B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240827&DB=EPODOC&CC=US&NR=12072749B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Fontoura, Marcus F</creatorcontrib><creatorcontrib>Manousakis, Ioannis</creatorcontrib><creatorcontrib>Bianchini, Ricardo G</creatorcontrib><creatorcontrib>Mahalingam, Nithish</creatorcontrib><creatorcontrib>Kumbhare, Alok Gautam</creatorcontrib><creatorcontrib>Azimi, Reza</creatorcontrib><title>Machine learning-based power capping and virtual machine placement in cloud platforms</title><description>Systems and methods for machine learning-based power capping and virtual machine placement in cloud platforms are disclosed. A method includes applying a machine learning model to predict whether a request for deployment of a virtual machine corresponds to deployment of a user-facing (UF) virtual machine or a non-user-facing (NUF) virtual machine. The method further includes sorting a list of candidate servers based on both a chassis score and a server score for each server to determine a ranked list of the candidate servers, where the server score depends at least on whether the request for the deployment of the virtual machine is determined to be a request for a deployment of a UF virtual machine or a request for a deployment of an NUF virtual machine. The method further includes deploying the virtual machine to a server with highest rank among the ranked list of the candidate servers.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi0EKwjAQAHPxIOof1gcUNArFq6J48aQ9lzXZ1kCyWZJUv2-FPsDTwDAzV80NzcsxgSdM7LivnpjJgsQPJTAoMjpAtvB2qQzoIUyDeDQUiAs4BuPjYH-qdDGFvFSzDn2m1cSFWl_Oj9O1IoktZRlPptI2963e1LreH45690_zBeYWOX4</recordid><startdate>20240827</startdate><enddate>20240827</enddate><creator>Fontoura, Marcus F</creator><creator>Manousakis, Ioannis</creator><creator>Bianchini, Ricardo G</creator><creator>Mahalingam, Nithish</creator><creator>Kumbhare, Alok Gautam</creator><creator>Azimi, Reza</creator><scope>EVB</scope></search><sort><creationdate>20240827</creationdate><title>Machine learning-based power capping and virtual machine placement in cloud platforms</title><author>Fontoura, Marcus F ; Manousakis, Ioannis ; Bianchini, Ricardo G ; Mahalingam, Nithish ; Kumbhare, Alok Gautam ; Azimi, Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US12072749B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Fontoura, Marcus F</creatorcontrib><creatorcontrib>Manousakis, Ioannis</creatorcontrib><creatorcontrib>Bianchini, Ricardo G</creatorcontrib><creatorcontrib>Mahalingam, Nithish</creatorcontrib><creatorcontrib>Kumbhare, Alok Gautam</creatorcontrib><creatorcontrib>Azimi, Reza</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fontoura, Marcus F</au><au>Manousakis, Ioannis</au><au>Bianchini, Ricardo G</au><au>Mahalingam, Nithish</au><au>Kumbhare, Alok Gautam</au><au>Azimi, Reza</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Machine learning-based power capping and virtual machine placement in cloud platforms</title><date>2024-08-27</date><risdate>2024</risdate><abstract>Systems and methods for machine learning-based power capping and virtual machine placement in cloud platforms are disclosed. A method includes applying a machine learning model to predict whether a request for deployment of a virtual machine corresponds to deployment of a user-facing (UF) virtual machine or a non-user-facing (NUF) virtual machine. The method further includes sorting a list of candidate servers based on both a chassis score and a server score for each server to determine a ranked list of the candidate servers, where the server score depends at least on whether the request for the deployment of the virtual machine is determined to be a request for a deployment of a UF virtual machine or a request for a deployment of an NUF virtual machine. The method further includes deploying the virtual machine to a server with highest rank among the ranked list of the candidate servers.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US12072749B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Machine learning-based power capping and virtual machine placement in cloud platforms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T11%3A11%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Fontoura,%20Marcus%20F&rft.date=2024-08-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS12072749B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |