Automated machine learning pipeline exploration and deployment
Techniques for automated machine learning (ML) pipeline exploration and deployment are described. An automated ML pipeline generation system allows users to easily construct optimized ML pipelines by providing a dataset, identifying a target column in the dataset, and providing an exploration budget...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Stefani, Stefano Dirac, Leo Parker Majumder, Orchid Das, Piali Venkateswar, Ravikumar Anantakrishnan Zhukov, Vladimir Rouesnel, Laurence Louis Eric Bansal, Tanya Li, Fan Grao Gil, Patricia Gautier, Philip Karnin, Zohar |
description | Techniques for automated machine learning (ML) pipeline exploration and deployment are described. An automated ML pipeline generation system allows users to easily construct optimized ML pipelines by providing a dataset, identifying a target column in the dataset, and providing an exploration budget. Multiple candidate ML pipelines can be identified and evaluated through an exploration process, and a best ML pipeline can be provided to the requesting user or deployed for production inference. Users can configure, monitor, and adapt the exploration at multiple points in time throughout. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US12061963B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US12061963B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US12061963B13</originalsourceid><addsrcrecordid>eNrjZLBzLC3Jz00sSU1RyE1MzsjMS1XISU0sysvMS1coyCxIzQGJpFYU5OQXJZZk5ucpJOalKKSkAvmVual5JTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JD402NDIwMzQ0szYydCYGDUApAsxVw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Automated machine learning pipeline exploration and deployment</title><source>esp@cenet</source><creator>Stefani, Stefano ; Dirac, Leo Parker ; Majumder, Orchid ; Das, Piali ; Venkateswar, Ravikumar Anantakrishnan ; Zhukov, Vladimir ; Rouesnel, Laurence Louis Eric ; Bansal, Tanya ; Li, Fan ; Grao Gil, Patricia ; Gautier, Philip ; Karnin, Zohar</creator><creatorcontrib>Stefani, Stefano ; Dirac, Leo Parker ; Majumder, Orchid ; Das, Piali ; Venkateswar, Ravikumar Anantakrishnan ; Zhukov, Vladimir ; Rouesnel, Laurence Louis Eric ; Bansal, Tanya ; Li, Fan ; Grao Gil, Patricia ; Gautier, Philip ; Karnin, Zohar</creatorcontrib><description>Techniques for automated machine learning (ML) pipeline exploration and deployment are described. An automated ML pipeline generation system allows users to easily construct optimized ML pipelines by providing a dataset, identifying a target column in the dataset, and providing an exploration budget. Multiple candidate ML pipelines can be identified and evaluated through an exploration process, and a best ML pipeline can be provided to the requesting user or deployed for production inference. Users can configure, monitor, and adapt the exploration at multiple points in time throughout.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240813&DB=EPODOC&CC=US&NR=12061963B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240813&DB=EPODOC&CC=US&NR=12061963B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Stefani, Stefano</creatorcontrib><creatorcontrib>Dirac, Leo Parker</creatorcontrib><creatorcontrib>Majumder, Orchid</creatorcontrib><creatorcontrib>Das, Piali</creatorcontrib><creatorcontrib>Venkateswar, Ravikumar Anantakrishnan</creatorcontrib><creatorcontrib>Zhukov, Vladimir</creatorcontrib><creatorcontrib>Rouesnel, Laurence Louis Eric</creatorcontrib><creatorcontrib>Bansal, Tanya</creatorcontrib><creatorcontrib>Li, Fan</creatorcontrib><creatorcontrib>Grao Gil, Patricia</creatorcontrib><creatorcontrib>Gautier, Philip</creatorcontrib><creatorcontrib>Karnin, Zohar</creatorcontrib><title>Automated machine learning pipeline exploration and deployment</title><description>Techniques for automated machine learning (ML) pipeline exploration and deployment are described. An automated ML pipeline generation system allows users to easily construct optimized ML pipelines by providing a dataset, identifying a target column in the dataset, and providing an exploration budget. Multiple candidate ML pipelines can be identified and evaluated through an exploration process, and a best ML pipeline can be provided to the requesting user or deployed for production inference. Users can configure, monitor, and adapt the exploration at multiple points in time throughout.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLBzLC3Jz00sSU1RyE1MzsjMS1XISU0sysvMS1coyCxIzQGJpFYU5OQXJZZk5ucpJOalKKSkAvmVual5JTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JD402NDIwMzQ0szYydCYGDUApAsxVw</recordid><startdate>20240813</startdate><enddate>20240813</enddate><creator>Stefani, Stefano</creator><creator>Dirac, Leo Parker</creator><creator>Majumder, Orchid</creator><creator>Das, Piali</creator><creator>Venkateswar, Ravikumar Anantakrishnan</creator><creator>Zhukov, Vladimir</creator><creator>Rouesnel, Laurence Louis Eric</creator><creator>Bansal, Tanya</creator><creator>Li, Fan</creator><creator>Grao Gil, Patricia</creator><creator>Gautier, Philip</creator><creator>Karnin, Zohar</creator><scope>EVB</scope></search><sort><creationdate>20240813</creationdate><title>Automated machine learning pipeline exploration and deployment</title><author>Stefani, Stefano ; Dirac, Leo Parker ; Majumder, Orchid ; Das, Piali ; Venkateswar, Ravikumar Anantakrishnan ; Zhukov, Vladimir ; Rouesnel, Laurence Louis Eric ; Bansal, Tanya ; Li, Fan ; Grao Gil, Patricia ; Gautier, Philip ; Karnin, Zohar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US12061963B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Stefani, Stefano</creatorcontrib><creatorcontrib>Dirac, Leo Parker</creatorcontrib><creatorcontrib>Majumder, Orchid</creatorcontrib><creatorcontrib>Das, Piali</creatorcontrib><creatorcontrib>Venkateswar, Ravikumar Anantakrishnan</creatorcontrib><creatorcontrib>Zhukov, Vladimir</creatorcontrib><creatorcontrib>Rouesnel, Laurence Louis Eric</creatorcontrib><creatorcontrib>Bansal, Tanya</creatorcontrib><creatorcontrib>Li, Fan</creatorcontrib><creatorcontrib>Grao Gil, Patricia</creatorcontrib><creatorcontrib>Gautier, Philip</creatorcontrib><creatorcontrib>Karnin, Zohar</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stefani, Stefano</au><au>Dirac, Leo Parker</au><au>Majumder, Orchid</au><au>Das, Piali</au><au>Venkateswar, Ravikumar Anantakrishnan</au><au>Zhukov, Vladimir</au><au>Rouesnel, Laurence Louis Eric</au><au>Bansal, Tanya</au><au>Li, Fan</au><au>Grao Gil, Patricia</au><au>Gautier, Philip</au><au>Karnin, Zohar</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Automated machine learning pipeline exploration and deployment</title><date>2024-08-13</date><risdate>2024</risdate><abstract>Techniques for automated machine learning (ML) pipeline exploration and deployment are described. An automated ML pipeline generation system allows users to easily construct optimized ML pipelines by providing a dataset, identifying a target column in the dataset, and providing an exploration budget. Multiple candidate ML pipelines can be identified and evaluated through an exploration process, and a best ML pipeline can be provided to the requesting user or deployed for production inference. Users can configure, monitor, and adapt the exploration at multiple points in time throughout.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US12061963B1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Automated machine learning pipeline exploration and deployment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T04%3A10%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Stefani,%20Stefano&rft.date=2024-08-13&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS12061963B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |