Automated machine learning pipeline exploration and deployment

Techniques for automated machine learning (ML) pipeline exploration and deployment are described. An automated ML pipeline generation system allows users to easily construct optimized ML pipelines by providing a dataset, identifying a target column in the dataset, and providing an exploration budget...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Stefani, Stefano, Dirac, Leo Parker, Majumder, Orchid, Das, Piali, Venkateswar, Ravikumar Anantakrishnan, Zhukov, Vladimir, Rouesnel, Laurence Louis Eric, Bansal, Tanya, Li, Fan, Grao Gil, Patricia, Gautier, Philip, Karnin, Zohar
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Stefani, Stefano
Dirac, Leo Parker
Majumder, Orchid
Das, Piali
Venkateswar, Ravikumar Anantakrishnan
Zhukov, Vladimir
Rouesnel, Laurence Louis Eric
Bansal, Tanya
Li, Fan
Grao Gil, Patricia
Gautier, Philip
Karnin, Zohar
description Techniques for automated machine learning (ML) pipeline exploration and deployment are described. An automated ML pipeline generation system allows users to easily construct optimized ML pipelines by providing a dataset, identifying a target column in the dataset, and providing an exploration budget. Multiple candidate ML pipelines can be identified and evaluated through an exploration process, and a best ML pipeline can be provided to the requesting user or deployed for production inference. Users can configure, monitor, and adapt the exploration at multiple points in time throughout.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US12061963B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US12061963B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US12061963B13</originalsourceid><addsrcrecordid>eNrjZLBzLC3Jz00sSU1RyE1MzsjMS1XISU0sysvMS1coyCxIzQGJpFYU5OQXJZZk5ucpJOalKKSkAvmVual5JTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JD402NDIwMzQ0szYydCYGDUApAsxVw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Automated machine learning pipeline exploration and deployment</title><source>esp@cenet</source><creator>Stefani, Stefano ; Dirac, Leo Parker ; Majumder, Orchid ; Das, Piali ; Venkateswar, Ravikumar Anantakrishnan ; Zhukov, Vladimir ; Rouesnel, Laurence Louis Eric ; Bansal, Tanya ; Li, Fan ; Grao Gil, Patricia ; Gautier, Philip ; Karnin, Zohar</creator><creatorcontrib>Stefani, Stefano ; Dirac, Leo Parker ; Majumder, Orchid ; Das, Piali ; Venkateswar, Ravikumar Anantakrishnan ; Zhukov, Vladimir ; Rouesnel, Laurence Louis Eric ; Bansal, Tanya ; Li, Fan ; Grao Gil, Patricia ; Gautier, Philip ; Karnin, Zohar</creatorcontrib><description>Techniques for automated machine learning (ML) pipeline exploration and deployment are described. An automated ML pipeline generation system allows users to easily construct optimized ML pipelines by providing a dataset, identifying a target column in the dataset, and providing an exploration budget. Multiple candidate ML pipelines can be identified and evaluated through an exploration process, and a best ML pipeline can be provided to the requesting user or deployed for production inference. Users can configure, monitor, and adapt the exploration at multiple points in time throughout.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240813&amp;DB=EPODOC&amp;CC=US&amp;NR=12061963B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240813&amp;DB=EPODOC&amp;CC=US&amp;NR=12061963B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Stefani, Stefano</creatorcontrib><creatorcontrib>Dirac, Leo Parker</creatorcontrib><creatorcontrib>Majumder, Orchid</creatorcontrib><creatorcontrib>Das, Piali</creatorcontrib><creatorcontrib>Venkateswar, Ravikumar Anantakrishnan</creatorcontrib><creatorcontrib>Zhukov, Vladimir</creatorcontrib><creatorcontrib>Rouesnel, Laurence Louis Eric</creatorcontrib><creatorcontrib>Bansal, Tanya</creatorcontrib><creatorcontrib>Li, Fan</creatorcontrib><creatorcontrib>Grao Gil, Patricia</creatorcontrib><creatorcontrib>Gautier, Philip</creatorcontrib><creatorcontrib>Karnin, Zohar</creatorcontrib><title>Automated machine learning pipeline exploration and deployment</title><description>Techniques for automated machine learning (ML) pipeline exploration and deployment are described. An automated ML pipeline generation system allows users to easily construct optimized ML pipelines by providing a dataset, identifying a target column in the dataset, and providing an exploration budget. Multiple candidate ML pipelines can be identified and evaluated through an exploration process, and a best ML pipeline can be provided to the requesting user or deployed for production inference. Users can configure, monitor, and adapt the exploration at multiple points in time throughout.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLBzLC3Jz00sSU1RyE1MzsjMS1XISU0sysvMS1coyCxIzQGJpFYU5OQXJZZk5ucpJOalKKSkAvmVual5JTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JD402NDIwMzQ0szYydCYGDUApAsxVw</recordid><startdate>20240813</startdate><enddate>20240813</enddate><creator>Stefani, Stefano</creator><creator>Dirac, Leo Parker</creator><creator>Majumder, Orchid</creator><creator>Das, Piali</creator><creator>Venkateswar, Ravikumar Anantakrishnan</creator><creator>Zhukov, Vladimir</creator><creator>Rouesnel, Laurence Louis Eric</creator><creator>Bansal, Tanya</creator><creator>Li, Fan</creator><creator>Grao Gil, Patricia</creator><creator>Gautier, Philip</creator><creator>Karnin, Zohar</creator><scope>EVB</scope></search><sort><creationdate>20240813</creationdate><title>Automated machine learning pipeline exploration and deployment</title><author>Stefani, Stefano ; Dirac, Leo Parker ; Majumder, Orchid ; Das, Piali ; Venkateswar, Ravikumar Anantakrishnan ; Zhukov, Vladimir ; Rouesnel, Laurence Louis Eric ; Bansal, Tanya ; Li, Fan ; Grao Gil, Patricia ; Gautier, Philip ; Karnin, Zohar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US12061963B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Stefani, Stefano</creatorcontrib><creatorcontrib>Dirac, Leo Parker</creatorcontrib><creatorcontrib>Majumder, Orchid</creatorcontrib><creatorcontrib>Das, Piali</creatorcontrib><creatorcontrib>Venkateswar, Ravikumar Anantakrishnan</creatorcontrib><creatorcontrib>Zhukov, Vladimir</creatorcontrib><creatorcontrib>Rouesnel, Laurence Louis Eric</creatorcontrib><creatorcontrib>Bansal, Tanya</creatorcontrib><creatorcontrib>Li, Fan</creatorcontrib><creatorcontrib>Grao Gil, Patricia</creatorcontrib><creatorcontrib>Gautier, Philip</creatorcontrib><creatorcontrib>Karnin, Zohar</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stefani, Stefano</au><au>Dirac, Leo Parker</au><au>Majumder, Orchid</au><au>Das, Piali</au><au>Venkateswar, Ravikumar Anantakrishnan</au><au>Zhukov, Vladimir</au><au>Rouesnel, Laurence Louis Eric</au><au>Bansal, Tanya</au><au>Li, Fan</au><au>Grao Gil, Patricia</au><au>Gautier, Philip</au><au>Karnin, Zohar</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Automated machine learning pipeline exploration and deployment</title><date>2024-08-13</date><risdate>2024</risdate><abstract>Techniques for automated machine learning (ML) pipeline exploration and deployment are described. An automated ML pipeline generation system allows users to easily construct optimized ML pipelines by providing a dataset, identifying a target column in the dataset, and providing an exploration budget. Multiple candidate ML pipelines can be identified and evaluated through an exploration process, and a best ML pipeline can be provided to the requesting user or deployed for production inference. Users can configure, monitor, and adapt the exploration at multiple points in time throughout.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US12061963B1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Automated machine learning pipeline exploration and deployment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T04%3A10%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Stefani,%20Stefano&rft.date=2024-08-13&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS12061963B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true