Artificial intelligence modeling for radiation therapy dose distribution analysis

Disclosed herein are methods and systems to optimize a radiation therapy treatment plan using dose distribution values predicted via a trained artificial intelligence model. A server trains the AI model using a training dataset comprising data associated with a plurality of previously implemented ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Peltola, Jarkko, Pietila, Ville, Rusanen, Marko
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Peltola, Jarkko
Pietila, Ville
Rusanen, Marko
description Disclosed herein are methods and systems to optimize a radiation therapy treatment plan using dose distribution values predicted via a trained artificial intelligence model. A server trains the AI model using a training dataset comprising data associated with a plurality of previously implemented radiation therapy treatments on a plurality of previous patients and dose distributions associated with one or more organs of each previous patient. The server then executes the trained AI model to predict dose distribution for a patient. The server then displays a heat map illustrating the predicted values, transmits the predicted values to a plan optimizer to generate an optimized treatment plan for the patient, and/or transmits an alert when a treatment plan generated by a plan optimizer deviates from rules and thresholds indicated within the patient's plan objectives.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US12053646B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US12053646B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US12053646B23</originalsourceid><addsrcrecordid>eNqNyjEOwjAMQNEsDAi4gzkAErTQHRCIFQFzZRqntWScKA5Db4-EOADTH96fuus-Fw7cMQqwFhLhnrQjeEVPwtpDiBkyesbCUaEMlDGN4KMReLaS-fn-CirKaGxzNwkoRotfZ255Pt2PlxWl2JIl7EiptI_bplrv6mbbHKr6n-cDTWk4yg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Artificial intelligence modeling for radiation therapy dose distribution analysis</title><source>esp@cenet</source><creator>Peltola, Jarkko ; Pietila, Ville ; Rusanen, Marko</creator><creatorcontrib>Peltola, Jarkko ; Pietila, Ville ; Rusanen, Marko</creatorcontrib><description>Disclosed herein are methods and systems to optimize a radiation therapy treatment plan using dose distribution values predicted via a trained artificial intelligence model. A server trains the AI model using a training dataset comprising data associated with a plurality of previously implemented radiation therapy treatments on a plurality of previous patients and dose distributions associated with one or more organs of each previous patient. The server then executes the trained AI model to predict dose distribution for a patient. The server then displays a heat map illustrating the predicted values, transmits the predicted values to a plan optimizer to generate an optimized treatment plan for the patient, and/or transmits an alert when a treatment plan generated by a plan optimizer deviates from rules and thresholds indicated within the patient's plan objectives.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTROTHERAPY ; HUMAN NECESSITIES ; HYGIENE ; MAGNETOTHERAPY ; MEDICAL OR VETERINARY SCIENCE ; PHYSICS ; RADIATION THERAPY ; ULTRASOUND THERAPY</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240806&amp;DB=EPODOC&amp;CC=US&amp;NR=12053646B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240806&amp;DB=EPODOC&amp;CC=US&amp;NR=12053646B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Peltola, Jarkko</creatorcontrib><creatorcontrib>Pietila, Ville</creatorcontrib><creatorcontrib>Rusanen, Marko</creatorcontrib><title>Artificial intelligence modeling for radiation therapy dose distribution analysis</title><description>Disclosed herein are methods and systems to optimize a radiation therapy treatment plan using dose distribution values predicted via a trained artificial intelligence model. A server trains the AI model using a training dataset comprising data associated with a plurality of previously implemented radiation therapy treatments on a plurality of previous patients and dose distributions associated with one or more organs of each previous patient. The server then executes the trained AI model to predict dose distribution for a patient. The server then displays a heat map illustrating the predicted values, transmits the predicted values to a plan optimizer to generate an optimized treatment plan for the patient, and/or transmits an alert when a treatment plan generated by a plan optimizer deviates from rules and thresholds indicated within the patient's plan objectives.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTROTHERAPY</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>MAGNETOTHERAPY</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>PHYSICS</subject><subject>RADIATION THERAPY</subject><subject>ULTRASOUND THERAPY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEOwjAMQNEsDAi4gzkAErTQHRCIFQFzZRqntWScKA5Db4-EOADTH96fuus-Fw7cMQqwFhLhnrQjeEVPwtpDiBkyesbCUaEMlDGN4KMReLaS-fn-CirKaGxzNwkoRotfZ255Pt2PlxWl2JIl7EiptI_bplrv6mbbHKr6n-cDTWk4yg</recordid><startdate>20240806</startdate><enddate>20240806</enddate><creator>Peltola, Jarkko</creator><creator>Pietila, Ville</creator><creator>Rusanen, Marko</creator><scope>EVB</scope></search><sort><creationdate>20240806</creationdate><title>Artificial intelligence modeling for radiation therapy dose distribution analysis</title><author>Peltola, Jarkko ; Pietila, Ville ; Rusanen, Marko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US12053646B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTROTHERAPY</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>MAGNETOTHERAPY</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>PHYSICS</topic><topic>RADIATION THERAPY</topic><topic>ULTRASOUND THERAPY</topic><toplevel>online_resources</toplevel><creatorcontrib>Peltola, Jarkko</creatorcontrib><creatorcontrib>Pietila, Ville</creatorcontrib><creatorcontrib>Rusanen, Marko</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peltola, Jarkko</au><au>Pietila, Ville</au><au>Rusanen, Marko</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Artificial intelligence modeling for radiation therapy dose distribution analysis</title><date>2024-08-06</date><risdate>2024</risdate><abstract>Disclosed herein are methods and systems to optimize a radiation therapy treatment plan using dose distribution values predicted via a trained artificial intelligence model. A server trains the AI model using a training dataset comprising data associated with a plurality of previously implemented radiation therapy treatments on a plurality of previous patients and dose distributions associated with one or more organs of each previous patient. The server then executes the trained AI model to predict dose distribution for a patient. The server then displays a heat map illustrating the predicted values, transmits the predicted values to a plan optimizer to generate an optimized treatment plan for the patient, and/or transmits an alert when a treatment plan generated by a plan optimizer deviates from rules and thresholds indicated within the patient's plan objectives.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US12053646B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTROTHERAPY
HUMAN NECESSITIES
HYGIENE
MAGNETOTHERAPY
MEDICAL OR VETERINARY SCIENCE
PHYSICS
RADIATION THERAPY
ULTRASOUND THERAPY
title Artificial intelligence modeling for radiation therapy dose distribution analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A07%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Peltola,%20Jarkko&rft.date=2024-08-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS12053646B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true