Artificial intelligence modeling for radiation therapy dose distribution analysis
Disclosed herein are methods and systems to optimize a radiation therapy treatment plan using dose distribution values predicted via a trained artificial intelligence model. A server trains the AI model using a training dataset comprising data associated with a plurality of previously implemented ra...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Peltola, Jarkko Pietila, Ville Rusanen, Marko |
description | Disclosed herein are methods and systems to optimize a radiation therapy treatment plan using dose distribution values predicted via a trained artificial intelligence model. A server trains the AI model using a training dataset comprising data associated with a plurality of previously implemented radiation therapy treatments on a plurality of previous patients and dose distributions associated with one or more organs of each previous patient. The server then executes the trained AI model to predict dose distribution for a patient. The server then displays a heat map illustrating the predicted values, transmits the predicted values to a plan optimizer to generate an optimized treatment plan for the patient, and/or transmits an alert when a treatment plan generated by a plan optimizer deviates from rules and thresholds indicated within the patient's plan objectives. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US12053646B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US12053646B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US12053646B23</originalsourceid><addsrcrecordid>eNqNyjEOwjAMQNEsDAi4gzkAErTQHRCIFQFzZRqntWScKA5Db4-EOADTH96fuus-Fw7cMQqwFhLhnrQjeEVPwtpDiBkyesbCUaEMlDGN4KMReLaS-fn-CirKaGxzNwkoRotfZ255Pt2PlxWl2JIl7EiptI_bplrv6mbbHKr6n-cDTWk4yg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Artificial intelligence modeling for radiation therapy dose distribution analysis</title><source>esp@cenet</source><creator>Peltola, Jarkko ; Pietila, Ville ; Rusanen, Marko</creator><creatorcontrib>Peltola, Jarkko ; Pietila, Ville ; Rusanen, Marko</creatorcontrib><description>Disclosed herein are methods and systems to optimize a radiation therapy treatment plan using dose distribution values predicted via a trained artificial intelligence model. A server trains the AI model using a training dataset comprising data associated with a plurality of previously implemented radiation therapy treatments on a plurality of previous patients and dose distributions associated with one or more organs of each previous patient. The server then executes the trained AI model to predict dose distribution for a patient. The server then displays a heat map illustrating the predicted values, transmits the predicted values to a plan optimizer to generate an optimized treatment plan for the patient, and/or transmits an alert when a treatment plan generated by a plan optimizer deviates from rules and thresholds indicated within the patient's plan objectives.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTROTHERAPY ; HUMAN NECESSITIES ; HYGIENE ; MAGNETOTHERAPY ; MEDICAL OR VETERINARY SCIENCE ; PHYSICS ; RADIATION THERAPY ; ULTRASOUND THERAPY</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240806&DB=EPODOC&CC=US&NR=12053646B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240806&DB=EPODOC&CC=US&NR=12053646B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Peltola, Jarkko</creatorcontrib><creatorcontrib>Pietila, Ville</creatorcontrib><creatorcontrib>Rusanen, Marko</creatorcontrib><title>Artificial intelligence modeling for radiation therapy dose distribution analysis</title><description>Disclosed herein are methods and systems to optimize a radiation therapy treatment plan using dose distribution values predicted via a trained artificial intelligence model. A server trains the AI model using a training dataset comprising data associated with a plurality of previously implemented radiation therapy treatments on a plurality of previous patients and dose distributions associated with one or more organs of each previous patient. The server then executes the trained AI model to predict dose distribution for a patient. The server then displays a heat map illustrating the predicted values, transmits the predicted values to a plan optimizer to generate an optimized treatment plan for the patient, and/or transmits an alert when a treatment plan generated by a plan optimizer deviates from rules and thresholds indicated within the patient's plan objectives.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTROTHERAPY</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>MAGNETOTHERAPY</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>PHYSICS</subject><subject>RADIATION THERAPY</subject><subject>ULTRASOUND THERAPY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEOwjAMQNEsDAi4gzkAErTQHRCIFQFzZRqntWScKA5Db4-EOADTH96fuus-Fw7cMQqwFhLhnrQjeEVPwtpDiBkyesbCUaEMlDGN4KMReLaS-fn-CirKaGxzNwkoRotfZ255Pt2PlxWl2JIl7EiptI_bplrv6mbbHKr6n-cDTWk4yg</recordid><startdate>20240806</startdate><enddate>20240806</enddate><creator>Peltola, Jarkko</creator><creator>Pietila, Ville</creator><creator>Rusanen, Marko</creator><scope>EVB</scope></search><sort><creationdate>20240806</creationdate><title>Artificial intelligence modeling for radiation therapy dose distribution analysis</title><author>Peltola, Jarkko ; Pietila, Ville ; Rusanen, Marko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US12053646B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTROTHERAPY</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>MAGNETOTHERAPY</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>PHYSICS</topic><topic>RADIATION THERAPY</topic><topic>ULTRASOUND THERAPY</topic><toplevel>online_resources</toplevel><creatorcontrib>Peltola, Jarkko</creatorcontrib><creatorcontrib>Pietila, Ville</creatorcontrib><creatorcontrib>Rusanen, Marko</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peltola, Jarkko</au><au>Pietila, Ville</au><au>Rusanen, Marko</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Artificial intelligence modeling for radiation therapy dose distribution analysis</title><date>2024-08-06</date><risdate>2024</risdate><abstract>Disclosed herein are methods and systems to optimize a radiation therapy treatment plan using dose distribution values predicted via a trained artificial intelligence model. A server trains the AI model using a training dataset comprising data associated with a plurality of previously implemented radiation therapy treatments on a plurality of previous patients and dose distributions associated with one or more organs of each previous patient. The server then executes the trained AI model to predict dose distribution for a patient. The server then displays a heat map illustrating the predicted values, transmits the predicted values to a plan optimizer to generate an optimized treatment plan for the patient, and/or transmits an alert when a treatment plan generated by a plan optimizer deviates from rules and thresholds indicated within the patient's plan objectives.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US12053646B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTROTHERAPY HUMAN NECESSITIES HYGIENE MAGNETOTHERAPY MEDICAL OR VETERINARY SCIENCE PHYSICS RADIATION THERAPY ULTRASOUND THERAPY |
title | Artificial intelligence modeling for radiation therapy dose distribution analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A07%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Peltola,%20Jarkko&rft.date=2024-08-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS12053646B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |