Collaborative learning model for semiconductor applications
Classifying wafers using Collaborative Learning. An initial wafer classification is determined by a rule-based model. A predicted wafer classification is determined by a machine learning model. Multiple users can manually review the classifications to confirm or modify, or to add user classification...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Keleher, Michael Kibarian, John Honda, Tomonori David, Jeffrey D Burch, Richard Ciplickas, Dennis Akar, Said Stine, Brian Cheong, Lin Lee Zhu, Qing Reddipalli, Vaishnavi Harris, Kenneth |
description | Classifying wafers using Collaborative Learning. An initial wafer classification is determined by a rule-based model. A predicted wafer classification is determined by a machine learning model. Multiple users can manually review the classifications to confirm or modify, or to add user classifications. All of the classifications are input to the machine learning model to continuously update its scheme for detection and classification. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US12038802B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US12038802B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US12038802B23</originalsourceid><addsrcrecordid>eNrjZLB2zs_JSUzKL0osySxLVchJTSzKy8xLV8jNT0nNUUjLL1IoTs3NTM7PSylNLgHyEgsKcjKTgYrz84p5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicmpeakl8aLChkYGxhYWBkZORMTFqAAwjMFs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Collaborative learning model for semiconductor applications</title><source>esp@cenet</source><creator>Keleher, Michael ; Kibarian, John ; Honda, Tomonori ; David, Jeffrey D ; Burch, Richard ; Ciplickas, Dennis ; Akar, Said ; Stine, Brian ; Cheong, Lin Lee ; Zhu, Qing ; Reddipalli, Vaishnavi ; Harris, Kenneth</creator><creatorcontrib>Keleher, Michael ; Kibarian, John ; Honda, Tomonori ; David, Jeffrey D ; Burch, Richard ; Ciplickas, Dennis ; Akar, Said ; Stine, Brian ; Cheong, Lin Lee ; Zhu, Qing ; Reddipalli, Vaishnavi ; Harris, Kenneth</creatorcontrib><description>Classifying wafers using Collaborative Learning. An initial wafer classification is determined by a rule-based model. A predicted wafer classification is determined by a machine learning model. Multiple users can manually review the classifications to confirm or modify, or to add user classifications. All of the classifications are input to the machine learning model to continuously update its scheme for detection and classification.</description><language>eng</language><subject>BASIC ELECTRIC ELEMENTS ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR ; ELECTRICITY ; PHYSICS ; SEMICONDUCTOR DEVICES</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240716&DB=EPODOC&CC=US&NR=12038802B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240716&DB=EPODOC&CC=US&NR=12038802B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Keleher, Michael</creatorcontrib><creatorcontrib>Kibarian, John</creatorcontrib><creatorcontrib>Honda, Tomonori</creatorcontrib><creatorcontrib>David, Jeffrey D</creatorcontrib><creatorcontrib>Burch, Richard</creatorcontrib><creatorcontrib>Ciplickas, Dennis</creatorcontrib><creatorcontrib>Akar, Said</creatorcontrib><creatorcontrib>Stine, Brian</creatorcontrib><creatorcontrib>Cheong, Lin Lee</creatorcontrib><creatorcontrib>Zhu, Qing</creatorcontrib><creatorcontrib>Reddipalli, Vaishnavi</creatorcontrib><creatorcontrib>Harris, Kenneth</creatorcontrib><title>Collaborative learning model for semiconductor applications</title><description>Classifying wafers using Collaborative Learning. An initial wafer classification is determined by a rule-based model. A predicted wafer classification is determined by a machine learning model. Multiple users can manually review the classifications to confirm or modify, or to add user classifications. All of the classifications are input to the machine learning model to continuously update its scheme for detection and classification.</description><subject>BASIC ELECTRIC ELEMENTS</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>SEMICONDUCTOR DEVICES</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLB2zs_JSUzKL0osySxLVchJTSzKy8xLV8jNT0nNUUjLL1IoTs3NTM7PSylNLgHyEgsKcjKTgYrz84p5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicmpeakl8aLChkYGxhYWBkZORMTFqAAwjMFs</recordid><startdate>20240716</startdate><enddate>20240716</enddate><creator>Keleher, Michael</creator><creator>Kibarian, John</creator><creator>Honda, Tomonori</creator><creator>David, Jeffrey D</creator><creator>Burch, Richard</creator><creator>Ciplickas, Dennis</creator><creator>Akar, Said</creator><creator>Stine, Brian</creator><creator>Cheong, Lin Lee</creator><creator>Zhu, Qing</creator><creator>Reddipalli, Vaishnavi</creator><creator>Harris, Kenneth</creator><scope>EVB</scope></search><sort><creationdate>20240716</creationdate><title>Collaborative learning model for semiconductor applications</title><author>Keleher, Michael ; Kibarian, John ; Honda, Tomonori ; David, Jeffrey D ; Burch, Richard ; Ciplickas, Dennis ; Akar, Said ; Stine, Brian ; Cheong, Lin Lee ; Zhu, Qing ; Reddipalli, Vaishnavi ; Harris, Kenneth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US12038802B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>BASIC ELECTRIC ELEMENTS</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>SEMICONDUCTOR DEVICES</topic><toplevel>online_resources</toplevel><creatorcontrib>Keleher, Michael</creatorcontrib><creatorcontrib>Kibarian, John</creatorcontrib><creatorcontrib>Honda, Tomonori</creatorcontrib><creatorcontrib>David, Jeffrey D</creatorcontrib><creatorcontrib>Burch, Richard</creatorcontrib><creatorcontrib>Ciplickas, Dennis</creatorcontrib><creatorcontrib>Akar, Said</creatorcontrib><creatorcontrib>Stine, Brian</creatorcontrib><creatorcontrib>Cheong, Lin Lee</creatorcontrib><creatorcontrib>Zhu, Qing</creatorcontrib><creatorcontrib>Reddipalli, Vaishnavi</creatorcontrib><creatorcontrib>Harris, Kenneth</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Keleher, Michael</au><au>Kibarian, John</au><au>Honda, Tomonori</au><au>David, Jeffrey D</au><au>Burch, Richard</au><au>Ciplickas, Dennis</au><au>Akar, Said</au><au>Stine, Brian</au><au>Cheong, Lin Lee</au><au>Zhu, Qing</au><au>Reddipalli, Vaishnavi</au><au>Harris, Kenneth</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Collaborative learning model for semiconductor applications</title><date>2024-07-16</date><risdate>2024</risdate><abstract>Classifying wafers using Collaborative Learning. An initial wafer classification is determined by a rule-based model. A predicted wafer classification is determined by a machine learning model. Multiple users can manually review the classifications to confirm or modify, or to add user classifications. All of the classifications are input to the machine learning model to continuously update its scheme for detection and classification.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US12038802B2 |
source | esp@cenet |
subjects | BASIC ELECTRIC ELEMENTS CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR ELECTRICITY PHYSICS SEMICONDUCTOR DEVICES |
title | Collaborative learning model for semiconductor applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T05%3A20%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Keleher,%20Michael&rft.date=2024-07-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS12038802B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |