Collaborative learning model for semiconductor applications

Classifying wafers using Collaborative Learning. An initial wafer classification is determined by a rule-based model. A predicted wafer classification is determined by a machine learning model. Multiple users can manually review the classifications to confirm or modify, or to add user classification...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Keleher, Michael, Kibarian, John, Honda, Tomonori, David, Jeffrey D, Burch, Richard, Ciplickas, Dennis, Akar, Said, Stine, Brian, Cheong, Lin Lee, Zhu, Qing, Reddipalli, Vaishnavi, Harris, Kenneth
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Keleher, Michael
Kibarian, John
Honda, Tomonori
David, Jeffrey D
Burch, Richard
Ciplickas, Dennis
Akar, Said
Stine, Brian
Cheong, Lin Lee
Zhu, Qing
Reddipalli, Vaishnavi
Harris, Kenneth
description Classifying wafers using Collaborative Learning. An initial wafer classification is determined by a rule-based model. A predicted wafer classification is determined by a machine learning model. Multiple users can manually review the classifications to confirm or modify, or to add user classifications. All of the classifications are input to the machine learning model to continuously update its scheme for detection and classification.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US12038802B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US12038802B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US12038802B23</originalsourceid><addsrcrecordid>eNrjZLB2zs_JSUzKL0osySxLVchJTSzKy8xLV8jNT0nNUUjLL1IoTs3NTM7PSylNLgHyEgsKcjKTgYrz84p5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicmpeakl8aLChkYGxhYWBkZORMTFqAAwjMFs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Collaborative learning model for semiconductor applications</title><source>esp@cenet</source><creator>Keleher, Michael ; Kibarian, John ; Honda, Tomonori ; David, Jeffrey D ; Burch, Richard ; Ciplickas, Dennis ; Akar, Said ; Stine, Brian ; Cheong, Lin Lee ; Zhu, Qing ; Reddipalli, Vaishnavi ; Harris, Kenneth</creator><creatorcontrib>Keleher, Michael ; Kibarian, John ; Honda, Tomonori ; David, Jeffrey D ; Burch, Richard ; Ciplickas, Dennis ; Akar, Said ; Stine, Brian ; Cheong, Lin Lee ; Zhu, Qing ; Reddipalli, Vaishnavi ; Harris, Kenneth</creatorcontrib><description>Classifying wafers using Collaborative Learning. An initial wafer classification is determined by a rule-based model. A predicted wafer classification is determined by a machine learning model. Multiple users can manually review the classifications to confirm or modify, or to add user classifications. All of the classifications are input to the machine learning model to continuously update its scheme for detection and classification.</description><language>eng</language><subject>BASIC ELECTRIC ELEMENTS ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR ; ELECTRICITY ; PHYSICS ; SEMICONDUCTOR DEVICES</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240716&amp;DB=EPODOC&amp;CC=US&amp;NR=12038802B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240716&amp;DB=EPODOC&amp;CC=US&amp;NR=12038802B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Keleher, Michael</creatorcontrib><creatorcontrib>Kibarian, John</creatorcontrib><creatorcontrib>Honda, Tomonori</creatorcontrib><creatorcontrib>David, Jeffrey D</creatorcontrib><creatorcontrib>Burch, Richard</creatorcontrib><creatorcontrib>Ciplickas, Dennis</creatorcontrib><creatorcontrib>Akar, Said</creatorcontrib><creatorcontrib>Stine, Brian</creatorcontrib><creatorcontrib>Cheong, Lin Lee</creatorcontrib><creatorcontrib>Zhu, Qing</creatorcontrib><creatorcontrib>Reddipalli, Vaishnavi</creatorcontrib><creatorcontrib>Harris, Kenneth</creatorcontrib><title>Collaborative learning model for semiconductor applications</title><description>Classifying wafers using Collaborative Learning. An initial wafer classification is determined by a rule-based model. A predicted wafer classification is determined by a machine learning model. Multiple users can manually review the classifications to confirm or modify, or to add user classifications. All of the classifications are input to the machine learning model to continuously update its scheme for detection and classification.</description><subject>BASIC ELECTRIC ELEMENTS</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>SEMICONDUCTOR DEVICES</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLB2zs_JSUzKL0osySxLVchJTSzKy8xLV8jNT0nNUUjLL1IoTs3NTM7PSylNLgHyEgsKcjKTgYrz84p5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicmpeakl8aLChkYGxhYWBkZORMTFqAAwjMFs</recordid><startdate>20240716</startdate><enddate>20240716</enddate><creator>Keleher, Michael</creator><creator>Kibarian, John</creator><creator>Honda, Tomonori</creator><creator>David, Jeffrey D</creator><creator>Burch, Richard</creator><creator>Ciplickas, Dennis</creator><creator>Akar, Said</creator><creator>Stine, Brian</creator><creator>Cheong, Lin Lee</creator><creator>Zhu, Qing</creator><creator>Reddipalli, Vaishnavi</creator><creator>Harris, Kenneth</creator><scope>EVB</scope></search><sort><creationdate>20240716</creationdate><title>Collaborative learning model for semiconductor applications</title><author>Keleher, Michael ; Kibarian, John ; Honda, Tomonori ; David, Jeffrey D ; Burch, Richard ; Ciplickas, Dennis ; Akar, Said ; Stine, Brian ; Cheong, Lin Lee ; Zhu, Qing ; Reddipalli, Vaishnavi ; Harris, Kenneth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US12038802B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>BASIC ELECTRIC ELEMENTS</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>SEMICONDUCTOR DEVICES</topic><toplevel>online_resources</toplevel><creatorcontrib>Keleher, Michael</creatorcontrib><creatorcontrib>Kibarian, John</creatorcontrib><creatorcontrib>Honda, Tomonori</creatorcontrib><creatorcontrib>David, Jeffrey D</creatorcontrib><creatorcontrib>Burch, Richard</creatorcontrib><creatorcontrib>Ciplickas, Dennis</creatorcontrib><creatorcontrib>Akar, Said</creatorcontrib><creatorcontrib>Stine, Brian</creatorcontrib><creatorcontrib>Cheong, Lin Lee</creatorcontrib><creatorcontrib>Zhu, Qing</creatorcontrib><creatorcontrib>Reddipalli, Vaishnavi</creatorcontrib><creatorcontrib>Harris, Kenneth</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Keleher, Michael</au><au>Kibarian, John</au><au>Honda, Tomonori</au><au>David, Jeffrey D</au><au>Burch, Richard</au><au>Ciplickas, Dennis</au><au>Akar, Said</au><au>Stine, Brian</au><au>Cheong, Lin Lee</au><au>Zhu, Qing</au><au>Reddipalli, Vaishnavi</au><au>Harris, Kenneth</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Collaborative learning model for semiconductor applications</title><date>2024-07-16</date><risdate>2024</risdate><abstract>Classifying wafers using Collaborative Learning. An initial wafer classification is determined by a rule-based model. A predicted wafer classification is determined by a machine learning model. Multiple users can manually review the classifications to confirm or modify, or to add user classifications. All of the classifications are input to the machine learning model to continuously update its scheme for detection and classification.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US12038802B2
source esp@cenet
subjects BASIC ELECTRIC ELEMENTS
CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
ELECTRICITY
PHYSICS
SEMICONDUCTOR DEVICES
title Collaborative learning model for semiconductor applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T05%3A20%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Keleher,%20Michael&rft.date=2024-07-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS12038802B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true