Machine learning-based patent quality metric
A machine-learning based artificial intelligence device for finding an estimate of patent quality, such as patent lifetime or term is disclosed. Such a device may receive a first set of patent data and generate a list of binary classifiers. A candidate set of binary classifiers may be selected and u...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Beers, Matthew Causevic, Elvir |
description | A machine-learning based artificial intelligence device for finding an estimate of patent quality, such as patent lifetime or term is disclosed. Such a device may receive a first set of patent data and generate a list of binary classifiers. A candidate set of binary classifiers may be selected and using a heuristic search, for example an artificial neural network (ANN), a genetic algorithm, a final set of binary classifiers is found by maximizing iteratively a yield according to a cost function, such an area under a curve (AUC) of a receiver operating characteristic (ROC). The device may then receive patent information for a target patent and report an estimate of patent quality according to the final set of binary classifiers. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US12014250B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US12014250B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US12014250B23</originalsourceid><addsrcrecordid>eNrjZNDxTUzOyMxLVchJTSzKy8xL101KLE5NUShILEnNK1EoLE3MySypVMhNLSnKTOZhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfGhwYZGBoYmRqYGTkbGxKgBAJxFKe8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Machine learning-based patent quality metric</title><source>esp@cenet</source><creator>Beers, Matthew ; Causevic, Elvir</creator><creatorcontrib>Beers, Matthew ; Causevic, Elvir</creatorcontrib><description>A machine-learning based artificial intelligence device for finding an estimate of patent quality, such as patent lifetime or term is disclosed. Such a device may receive a first set of patent data and generate a list of binary classifiers. A candidate set of binary classifiers may be selected and using a heuristic search, for example an artificial neural network (ANN), a genetic algorithm, a final set of binary classifiers is found by maximizing iteratively a yield according to a cost function, such an area under a curve (AUC) of a receiver operating characteristic (ROC). The device may then receive patent information for a target patent and report an estimate of patent quality according to the final set of binary classifiers.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240618&DB=EPODOC&CC=US&NR=12014250B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25551,76302</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240618&DB=EPODOC&CC=US&NR=12014250B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Beers, Matthew</creatorcontrib><creatorcontrib>Causevic, Elvir</creatorcontrib><title>Machine learning-based patent quality metric</title><description>A machine-learning based artificial intelligence device for finding an estimate of patent quality, such as patent lifetime or term is disclosed. Such a device may receive a first set of patent data and generate a list of binary classifiers. A candidate set of binary classifiers may be selected and using a heuristic search, for example an artificial neural network (ANN), a genetic algorithm, a final set of binary classifiers is found by maximizing iteratively a yield according to a cost function, such an area under a curve (AUC) of a receiver operating characteristic (ROC). The device may then receive patent information for a target patent and report an estimate of patent quality according to the final set of binary classifiers.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNDxTUzOyMxLVchJTSzKy8xL101KLE5NUShILEnNK1EoLE3MySypVMhNLSnKTOZhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfGhwYZGBoYmRqYGTkbGxKgBAJxFKe8</recordid><startdate>20240618</startdate><enddate>20240618</enddate><creator>Beers, Matthew</creator><creator>Causevic, Elvir</creator><scope>EVB</scope></search><sort><creationdate>20240618</creationdate><title>Machine learning-based patent quality metric</title><author>Beers, Matthew ; Causevic, Elvir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US12014250B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Beers, Matthew</creatorcontrib><creatorcontrib>Causevic, Elvir</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Beers, Matthew</au><au>Causevic, Elvir</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Machine learning-based patent quality metric</title><date>2024-06-18</date><risdate>2024</risdate><abstract>A machine-learning based artificial intelligence device for finding an estimate of patent quality, such as patent lifetime or term is disclosed. Such a device may receive a first set of patent data and generate a list of binary classifiers. A candidate set of binary classifiers may be selected and using a heuristic search, for example an artificial neural network (ANN), a genetic algorithm, a final set of binary classifiers is found by maximizing iteratively a yield according to a cost function, such an area under a curve (AUC) of a receiver operating characteristic (ROC). The device may then receive patent information for a target patent and report an estimate of patent quality according to the final set of binary classifiers.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US12014250B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Machine learning-based patent quality metric |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A10%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Beers,%20Matthew&rft.date=2024-06-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS12014250B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |