Automated fact checking using iterative knowledge base querying

An embodiment includes decomposing a natural language assertion into a natural language question and answer pair that includes an initial question and an initial answer. The embodiment translates the initial question into a structured knowledge graph query and then performs an iterative process comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Khandelwal, Dinesh, Shrivatsa Bhargav, G P, Dana, Saswati, Garg, Dinesh
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Khandelwal, Dinesh
Shrivatsa Bhargav, G P
Dana, Saswati
Garg, Dinesh
description An embodiment includes decomposing a natural language assertion into a natural language question and answer pair that includes an initial question and an initial answer. The embodiment translates the initial question into a structured knowledge graph query and then performs an iterative process comprising iterative querying of a knowledge graph and evaluating of corresponding query responses resulting in respective confidence scores. A first iteration of the iterative process comprises querying of the knowledge graph to retrieve a first predicted answer, then determining whether a degree of similarity between the initial answer and the first predicted answer meets a threshold criterion. If not, the first predicted query is altered and used for querying the knowledge graph in a subsequent iteration of the iterative process. The embodiment also generates an assertion correctness score indicative of a degree of confidence that the assertion is factual using the respective confidence scores.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US12008000B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US12008000B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US12008000B23</originalsourceid><addsrcrecordid>eNrjZLB3LC3Jz00sSU1RSEtMLlFIzkhNzs7MS1coLQaRmSWpRYklmWWpCtl5-eU5qSnpqQpJicWpCoWlqUWVQBU8DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxOTUvtSQ-NNjQyMDAwsDAwMnImBg1ALlkMVA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Automated fact checking using iterative knowledge base querying</title><source>esp@cenet</source><creator>Khandelwal, Dinesh ; Shrivatsa Bhargav, G P ; Dana, Saswati ; Garg, Dinesh</creator><creatorcontrib>Khandelwal, Dinesh ; Shrivatsa Bhargav, G P ; Dana, Saswati ; Garg, Dinesh</creatorcontrib><description>An embodiment includes decomposing a natural language assertion into a natural language question and answer pair that includes an initial question and an initial answer. The embodiment translates the initial question into a structured knowledge graph query and then performs an iterative process comprising iterative querying of a knowledge graph and evaluating of corresponding query responses resulting in respective confidence scores. A first iteration of the iterative process comprises querying of the knowledge graph to retrieve a first predicted answer, then determining whether a degree of similarity between the initial answer and the first predicted answer meets a threshold criterion. If not, the first predicted query is altered and used for querying the knowledge graph in a subsequent iteration of the iterative process. The embodiment also generates an assertion correctness score indicative of a degree of confidence that the assertion is factual using the respective confidence scores.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240611&amp;DB=EPODOC&amp;CC=US&amp;NR=12008000B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76419</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240611&amp;DB=EPODOC&amp;CC=US&amp;NR=12008000B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Khandelwal, Dinesh</creatorcontrib><creatorcontrib>Shrivatsa Bhargav, G P</creatorcontrib><creatorcontrib>Dana, Saswati</creatorcontrib><creatorcontrib>Garg, Dinesh</creatorcontrib><title>Automated fact checking using iterative knowledge base querying</title><description>An embodiment includes decomposing a natural language assertion into a natural language question and answer pair that includes an initial question and an initial answer. The embodiment translates the initial question into a structured knowledge graph query and then performs an iterative process comprising iterative querying of a knowledge graph and evaluating of corresponding query responses resulting in respective confidence scores. A first iteration of the iterative process comprises querying of the knowledge graph to retrieve a first predicted answer, then determining whether a degree of similarity between the initial answer and the first predicted answer meets a threshold criterion. If not, the first predicted query is altered and used for querying the knowledge graph in a subsequent iteration of the iterative process. The embodiment also generates an assertion correctness score indicative of a degree of confidence that the assertion is factual using the respective confidence scores.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLB3LC3Jz00sSU1RSEtMLlFIzkhNzs7MS1coLQaRmSWpRYklmWWpCtl5-eU5qSnpqQpJicWpCoWlqUWVQBU8DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxOTUvtSQ-NNjQyMDAwsDAwMnImBg1ALlkMVA</recordid><startdate>20240611</startdate><enddate>20240611</enddate><creator>Khandelwal, Dinesh</creator><creator>Shrivatsa Bhargav, G P</creator><creator>Dana, Saswati</creator><creator>Garg, Dinesh</creator><scope>EVB</scope></search><sort><creationdate>20240611</creationdate><title>Automated fact checking using iterative knowledge base querying</title><author>Khandelwal, Dinesh ; Shrivatsa Bhargav, G P ; Dana, Saswati ; Garg, Dinesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US12008000B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Khandelwal, Dinesh</creatorcontrib><creatorcontrib>Shrivatsa Bhargav, G P</creatorcontrib><creatorcontrib>Dana, Saswati</creatorcontrib><creatorcontrib>Garg, Dinesh</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khandelwal, Dinesh</au><au>Shrivatsa Bhargav, G P</au><au>Dana, Saswati</au><au>Garg, Dinesh</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Automated fact checking using iterative knowledge base querying</title><date>2024-06-11</date><risdate>2024</risdate><abstract>An embodiment includes decomposing a natural language assertion into a natural language question and answer pair that includes an initial question and an initial answer. The embodiment translates the initial question into a structured knowledge graph query and then performs an iterative process comprising iterative querying of a knowledge graph and evaluating of corresponding query responses resulting in respective confidence scores. A first iteration of the iterative process comprises querying of the knowledge graph to retrieve a first predicted answer, then determining whether a degree of similarity between the initial answer and the first predicted answer meets a threshold criterion. If not, the first predicted query is altered and used for querying the knowledge graph in a subsequent iteration of the iterative process. The embodiment also generates an assertion correctness score indicative of a degree of confidence that the assertion is factual using the respective confidence scores.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US12008000B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Automated fact checking using iterative knowledge base querying
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A08%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Khandelwal,%20Dinesh&rft.date=2024-06-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS12008000B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true