Machine learning and wireless control of a flexible display device actuator
Expandable touch screen display devices each having a flexible display that can be reconfigured from a compact state to an expanded state which also includes an actuator that can be controlled wirelessly and through machine learning algorithms. The form factor of the compact state for each device is...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Delaporte, Stephen E |
description | Expandable touch screen display devices each having a flexible display that can be reconfigured from a compact state to an expanded state which also includes an actuator that can be controlled wirelessly and through machine learning algorithms. The form factor of the compact state for each device is roughly the size of a typical handheld phone or smaller. The form factor of the expanded state for each device is roughly the size of a larger phone or tablet computer. An internal actuator is provided for driving the motion of each device's change in size, whether through folding or sliding, or for other functions such as haptic feedback. The device may further include an integrated speaker and microphone, and sensors to indicate the expanded position of the display. In one embodiment, a module attached to, situated within, or otherwise associated with the device may contain all or substantially all processing and memory, along with a communications system. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11997805B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11997805B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11997805B23</originalsourceid><addsrcrecordid>eNqNyj0KAjEQBtA0FqLeYTyA4Cqi2yqKIFZqvYzJFw0Mk5DEv9vbeACr17y-ORzZ3oOCBJw16I1YHb1ChqAUslFrjkLRE5MXvMNVQC6UJPwhh2ewILb1wTXmoel5loLRz4EZ77bnzX6CFDuUxBaK2l1OTdO2y9V0sZ7N_zlfWR01pw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Machine learning and wireless control of a flexible display device actuator</title><source>esp@cenet</source><creator>Delaporte, Stephen E</creator><creatorcontrib>Delaporte, Stephen E</creatorcontrib><description>Expandable touch screen display devices each having a flexible display that can be reconfigured from a compact state to an expanded state which also includes an actuator that can be controlled wirelessly and through machine learning algorithms. The form factor of the compact state for each device is roughly the size of a typical handheld phone or smaller. The form factor of the expanded state for each device is roughly the size of a larger phone or tablet computer. An internal actuator is provided for driving the motion of each device's change in size, whether through folding or sliding, or for other functions such as haptic feedback. The device may further include an integrated speaker and microphone, and sensors to indicate the expanded position of the display. In one embodiment, a module attached to, situated within, or otherwise associated with the device may contain all or substantially all processing and memory, along with a communications system.</description><language>eng</language><subject>CALCULATING ; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR ; ELECTRICITY ; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS ; PHYSICS ; PRINTED CIRCUITS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240528&DB=EPODOC&CC=US&NR=11997805B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240528&DB=EPODOC&CC=US&NR=11997805B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Delaporte, Stephen E</creatorcontrib><title>Machine learning and wireless control of a flexible display device actuator</title><description>Expandable touch screen display devices each having a flexible display that can be reconfigured from a compact state to an expanded state which also includes an actuator that can be controlled wirelessly and through machine learning algorithms. The form factor of the compact state for each device is roughly the size of a typical handheld phone or smaller. The form factor of the expanded state for each device is roughly the size of a larger phone or tablet computer. An internal actuator is provided for driving the motion of each device's change in size, whether through folding or sliding, or for other functions such as haptic feedback. The device may further include an integrated speaker and microphone, and sensors to indicate the expanded position of the display. In one embodiment, a module attached to, situated within, or otherwise associated with the device may contain all or substantially all processing and memory, along with a communications system.</description><subject>CALCULATING</subject><subject>CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR</subject><subject>ELECTRICITY</subject><subject>MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS</subject><subject>PHYSICS</subject><subject>PRINTED CIRCUITS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyj0KAjEQBtA0FqLeYTyA4Cqi2yqKIFZqvYzJFw0Mk5DEv9vbeACr17y-ORzZ3oOCBJw16I1YHb1ChqAUslFrjkLRE5MXvMNVQC6UJPwhh2ewILb1wTXmoel5loLRz4EZ77bnzX6CFDuUxBaK2l1OTdO2y9V0sZ7N_zlfWR01pw</recordid><startdate>20240528</startdate><enddate>20240528</enddate><creator>Delaporte, Stephen E</creator><scope>EVB</scope></search><sort><creationdate>20240528</creationdate><title>Machine learning and wireless control of a flexible display device actuator</title><author>Delaporte, Stephen E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11997805B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR</topic><topic>ELECTRICITY</topic><topic>MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS</topic><topic>PHYSICS</topic><topic>PRINTED CIRCUITS</topic><toplevel>online_resources</toplevel><creatorcontrib>Delaporte, Stephen E</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Delaporte, Stephen E</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Machine learning and wireless control of a flexible display device actuator</title><date>2024-05-28</date><risdate>2024</risdate><abstract>Expandable touch screen display devices each having a flexible display that can be reconfigured from a compact state to an expanded state which also includes an actuator that can be controlled wirelessly and through machine learning algorithms. The form factor of the compact state for each device is roughly the size of a typical handheld phone or smaller. The form factor of the expanded state for each device is roughly the size of a larger phone or tablet computer. An internal actuator is provided for driving the motion of each device's change in size, whether through folding or sliding, or for other functions such as haptic feedback. The device may further include an integrated speaker and microphone, and sensors to indicate the expanded position of the display. In one embodiment, a module attached to, situated within, or otherwise associated with the device may contain all or substantially all processing and memory, along with a communications system.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11997805B2 |
source | esp@cenet |
subjects | CALCULATING CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR ELECTRICITY MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS PHYSICS PRINTED CIRCUITS |
title | Machine learning and wireless control of a flexible display device actuator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A38%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Delaporte,%20Stephen%20E&rft.date=2024-05-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11997805B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |