Identifying high effort statements for call center summaries

Disclosed herein are system, method, and computer program product embodiments for machine learning systems to process incoming call-center calls to provide communication summaries that capture effort levels of statements made during interactive communications. For a given call, the system receives a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Symons, Chris, Can, Aysu Ezen, Brown, Zachary S
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Symons, Chris
Can, Aysu Ezen
Brown, Zachary S
description Disclosed herein are system, method, and computer program product embodiments for machine learning systems to process incoming call-center calls to provide communication summaries that capture effort levels of statements made during interactive communications. For a given call, the system receives a transcript as the input and generates a textual summary as the output. In order to improve a call summary and customize a summarization task to a call center domain, the technology disclosed herein may employ a classifier that predicts an effort level and attention score for individual utterances within a call transcript, ranks the attention scores and uses selected ones of the ranked utterances in the summary.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11989514B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11989514B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11989514B23</originalsourceid><addsrcrecordid>eNrjZLDxTEnNK8lMq8zMS1fIyEzPUEhNS8svKlEoLkksSc0FyhUrAPkKyYk5OQrJQG5qkUJxaW5uYlFmajEPA2taYk5xKi-U5mZQdHMNcfbQTS3Ij08tLkgEakgtiQ8NNjS0tLA0NTRxMjImRg0AFxAwZQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Identifying high effort statements for call center summaries</title><source>esp@cenet</source><creator>Symons, Chris ; Can, Aysu Ezen ; Brown, Zachary S</creator><creatorcontrib>Symons, Chris ; Can, Aysu Ezen ; Brown, Zachary S</creatorcontrib><description>Disclosed herein are system, method, and computer program product embodiments for machine learning systems to process incoming call-center calls to provide communication summaries that capture effort levels of statements made during interactive communications. For a given call, the system receives a transcript as the input and generates a textual summary as the output. In order to improve a call summary and customize a summarization task to a call center domain, the technology disclosed herein may employ a classifier that predicts an effort level and attention score for individual utterances within a call transcript, ranks the attention scores and uses selected ones of the ranked utterances in the summary.</description><language>eng</language><subject>ACOUSTICS ; CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; MUSICAL INSTRUMENTS ; PHYSICS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION ; TELEPHONIC COMMUNICATION</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240521&amp;DB=EPODOC&amp;CC=US&amp;NR=11989514B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240521&amp;DB=EPODOC&amp;CC=US&amp;NR=11989514B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Symons, Chris</creatorcontrib><creatorcontrib>Can, Aysu Ezen</creatorcontrib><creatorcontrib>Brown, Zachary S</creatorcontrib><title>Identifying high effort statements for call center summaries</title><description>Disclosed herein are system, method, and computer program product embodiments for machine learning systems to process incoming call-center calls to provide communication summaries that capture effort levels of statements made during interactive communications. For a given call, the system receives a transcript as the input and generates a textual summary as the output. In order to improve a call summary and customize a summarization task to a call center domain, the technology disclosed herein may employ a classifier that predicts an effort level and attention score for individual utterances within a call transcript, ranks the attention scores and uses selected ones of the ranked utterances in the summary.</description><subject>ACOUSTICS</subject><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><subject>TELEPHONIC COMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLDxTEnNK8lMq8zMS1fIyEzPUEhNS8svKlEoLkksSc0FyhUrAPkKyYk5OQrJQG5qkUJxaW5uYlFmajEPA2taYk5xKi-U5mZQdHMNcfbQTS3Ij08tLkgEakgtiQ8NNjS0tLA0NTRxMjImRg0AFxAwZQ</recordid><startdate>20240521</startdate><enddate>20240521</enddate><creator>Symons, Chris</creator><creator>Can, Aysu Ezen</creator><creator>Brown, Zachary S</creator><scope>EVB</scope></search><sort><creationdate>20240521</creationdate><title>Identifying high effort statements for call center summaries</title><author>Symons, Chris ; Can, Aysu Ezen ; Brown, Zachary S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11989514B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ACOUSTICS</topic><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><topic>TELEPHONIC COMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Symons, Chris</creatorcontrib><creatorcontrib>Can, Aysu Ezen</creatorcontrib><creatorcontrib>Brown, Zachary S</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Symons, Chris</au><au>Can, Aysu Ezen</au><au>Brown, Zachary S</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Identifying high effort statements for call center summaries</title><date>2024-05-21</date><risdate>2024</risdate><abstract>Disclosed herein are system, method, and computer program product embodiments for machine learning systems to process incoming call-center calls to provide communication summaries that capture effort levels of statements made during interactive communications. For a given call, the system receives a transcript as the input and generates a textual summary as the output. In order to improve a call summary and customize a summarization task to a call center domain, the technology disclosed herein may employ a classifier that predicts an effort level and attention score for individual utterances within a call transcript, ranks the attention scores and uses selected ones of the ranked utterances in the summary.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11989514B2
source esp@cenet
subjects ACOUSTICS
CALCULATING
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
MUSICAL INSTRUMENTS
PHYSICS
SPEECH ANALYSIS OR SYNTHESIS
SPEECH OR AUDIO CODING OR DECODING
SPEECH OR VOICE PROCESSING
SPEECH RECOGNITION
TELEPHONIC COMMUNICATION
title Identifying high effort statements for call center summaries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A53%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Symons,%20Chris&rft.date=2024-05-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11989514B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true