Identifying high effort statements for call center summaries
Disclosed herein are system, method, and computer program product embodiments for machine learning systems to process incoming call-center calls to provide communication summaries that capture effort levels of statements made during interactive communications. For a given call, the system receives a...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Symons, Chris Can, Aysu Ezen Brown, Zachary S |
description | Disclosed herein are system, method, and computer program product embodiments for machine learning systems to process incoming call-center calls to provide communication summaries that capture effort levels of statements made during interactive communications. For a given call, the system receives a transcript as the input and generates a textual summary as the output. In order to improve a call summary and customize a summarization task to a call center domain, the technology disclosed herein may employ a classifier that predicts an effort level and attention score for individual utterances within a call transcript, ranks the attention scores and uses selected ones of the ranked utterances in the summary. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11989514B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11989514B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11989514B23</originalsourceid><addsrcrecordid>eNrjZLDxTEnNK8lMq8zMS1fIyEzPUEhNS8svKlEoLkksSc0FyhUrAPkKyYk5OQrJQG5qkUJxaW5uYlFmajEPA2taYk5xKi-U5mZQdHMNcfbQTS3Ij08tLkgEakgtiQ8NNjS0tLA0NTRxMjImRg0AFxAwZQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Identifying high effort statements for call center summaries</title><source>esp@cenet</source><creator>Symons, Chris ; Can, Aysu Ezen ; Brown, Zachary S</creator><creatorcontrib>Symons, Chris ; Can, Aysu Ezen ; Brown, Zachary S</creatorcontrib><description>Disclosed herein are system, method, and computer program product embodiments for machine learning systems to process incoming call-center calls to provide communication summaries that capture effort levels of statements made during interactive communications. For a given call, the system receives a transcript as the input and generates a textual summary as the output. In order to improve a call summary and customize a summarization task to a call center domain, the technology disclosed herein may employ a classifier that predicts an effort level and attention score for individual utterances within a call transcript, ranks the attention scores and uses selected ones of the ranked utterances in the summary.</description><language>eng</language><subject>ACOUSTICS ; CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; MUSICAL INSTRUMENTS ; PHYSICS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION ; TELEPHONIC COMMUNICATION</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240521&DB=EPODOC&CC=US&NR=11989514B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240521&DB=EPODOC&CC=US&NR=11989514B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Symons, Chris</creatorcontrib><creatorcontrib>Can, Aysu Ezen</creatorcontrib><creatorcontrib>Brown, Zachary S</creatorcontrib><title>Identifying high effort statements for call center summaries</title><description>Disclosed herein are system, method, and computer program product embodiments for machine learning systems to process incoming call-center calls to provide communication summaries that capture effort levels of statements made during interactive communications. For a given call, the system receives a transcript as the input and generates a textual summary as the output. In order to improve a call summary and customize a summarization task to a call center domain, the technology disclosed herein may employ a classifier that predicts an effort level and attention score for individual utterances within a call transcript, ranks the attention scores and uses selected ones of the ranked utterances in the summary.</description><subject>ACOUSTICS</subject><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><subject>TELEPHONIC COMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLDxTEnNK8lMq8zMS1fIyEzPUEhNS8svKlEoLkksSc0FyhUrAPkKyYk5OQrJQG5qkUJxaW5uYlFmajEPA2taYk5xKi-U5mZQdHMNcfbQTS3Ij08tLkgEakgtiQ8NNjS0tLA0NTRxMjImRg0AFxAwZQ</recordid><startdate>20240521</startdate><enddate>20240521</enddate><creator>Symons, Chris</creator><creator>Can, Aysu Ezen</creator><creator>Brown, Zachary S</creator><scope>EVB</scope></search><sort><creationdate>20240521</creationdate><title>Identifying high effort statements for call center summaries</title><author>Symons, Chris ; Can, Aysu Ezen ; Brown, Zachary S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11989514B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ACOUSTICS</topic><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><topic>TELEPHONIC COMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Symons, Chris</creatorcontrib><creatorcontrib>Can, Aysu Ezen</creatorcontrib><creatorcontrib>Brown, Zachary S</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Symons, Chris</au><au>Can, Aysu Ezen</au><au>Brown, Zachary S</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Identifying high effort statements for call center summaries</title><date>2024-05-21</date><risdate>2024</risdate><abstract>Disclosed herein are system, method, and computer program product embodiments for machine learning systems to process incoming call-center calls to provide communication summaries that capture effort levels of statements made during interactive communications. For a given call, the system receives a transcript as the input and generates a textual summary as the output. In order to improve a call summary and customize a summarization task to a call center domain, the technology disclosed herein may employ a classifier that predicts an effort level and attention score for individual utterances within a call transcript, ranks the attention scores and uses selected ones of the ranked utterances in the summary.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11989514B2 |
source | esp@cenet |
subjects | ACOUSTICS CALCULATING COMPUTING COUNTING ELECTRIC COMMUNICATION TECHNIQUE ELECTRIC DIGITAL DATA PROCESSING ELECTRICITY MUSICAL INSTRUMENTS PHYSICS SPEECH ANALYSIS OR SYNTHESIS SPEECH OR AUDIO CODING OR DECODING SPEECH OR VOICE PROCESSING SPEECH RECOGNITION TELEPHONIC COMMUNICATION |
title | Identifying high effort statements for call center summaries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A53%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Symons,%20Chris&rft.date=2024-05-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11989514B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |