Dynamically federated data breach detection
A processor distributes, from a server, a trained supervised machine learning (ML) model and supervised and unsupervised feature information to a plurality of client devices; at each client device, trains the supervised ML model using local data to generate a local supervised ML model, constructs a...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Qiao, Mu Jadav, Divyesh Butler, Eric Kevin |
description | A processor distributes, from a server, a trained supervised machine learning (ML) model and supervised and unsupervised feature information to a plurality of client devices; at each client device, trains the supervised ML model using local data to generate a local supervised ML model, constructs a local unsupervised ML model using the unsupervised feature information, and deploys the local supervised and unsupervised ML models; determining when a detection performance difference between the local supervised and unsupervised ML models reaches a threshold; identifies a proposed change to the supervised or unsupervised feature information; deploys the proposed change on one client device; responsive to determining the proposed change improves the detection performance of that client device, communicates the proposed change to a sampled set of client devices; and responsive to determining the proposed change improves the detection performance of a majority of the sampled set, communicates the proposed change to the server. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11968221B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11968221B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11968221B23</originalsourceid><addsrcrecordid>eNrjZNB2qcxLzM1MTszJqVRIS01JLUosSU1RSEksSVRIKkpNTM5QSEktSU0uyczP42FgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8aHBhoaWZhZGRoZORsbEqAEAatMpmw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Dynamically federated data breach detection</title><source>esp@cenet</source><creator>Qiao, Mu ; Jadav, Divyesh ; Butler, Eric Kevin</creator><creatorcontrib>Qiao, Mu ; Jadav, Divyesh ; Butler, Eric Kevin</creatorcontrib><description>A processor distributes, from a server, a trained supervised machine learning (ML) model and supervised and unsupervised feature information to a plurality of client devices; at each client device, trains the supervised ML model using local data to generate a local supervised ML model, constructs a local unsupervised ML model using the unsupervised feature information, and deploys the local supervised and unsupervised ML models; determining when a detection performance difference between the local supervised and unsupervised ML models reaches a threshold; identifies a proposed change to the supervised or unsupervised feature information; deploys the proposed change on one client device; responsive to determining the proposed change improves the detection performance of that client device, communicates the proposed change to a sampled set of client devices; and responsive to determining the proposed change improves the detection performance of a majority of the sampled set, communicates the proposed change to the server.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240423&DB=EPODOC&CC=US&NR=11968221B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240423&DB=EPODOC&CC=US&NR=11968221B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Qiao, Mu</creatorcontrib><creatorcontrib>Jadav, Divyesh</creatorcontrib><creatorcontrib>Butler, Eric Kevin</creatorcontrib><title>Dynamically federated data breach detection</title><description>A processor distributes, from a server, a trained supervised machine learning (ML) model and supervised and unsupervised feature information to a plurality of client devices; at each client device, trains the supervised ML model using local data to generate a local supervised ML model, constructs a local unsupervised ML model using the unsupervised feature information, and deploys the local supervised and unsupervised ML models; determining when a detection performance difference between the local supervised and unsupervised ML models reaches a threshold; identifies a proposed change to the supervised or unsupervised feature information; deploys the proposed change on one client device; responsive to determining the proposed change improves the detection performance of that client device, communicates the proposed change to a sampled set of client devices; and responsive to determining the proposed change improves the detection performance of a majority of the sampled set, communicates the proposed change to the server.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNB2qcxLzM1MTszJqVRIS01JLUosSU1RSEksSVRIKkpNTM5QSEktSU0uyczP42FgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8aHBhoaWZhZGRoZORsbEqAEAatMpmw</recordid><startdate>20240423</startdate><enddate>20240423</enddate><creator>Qiao, Mu</creator><creator>Jadav, Divyesh</creator><creator>Butler, Eric Kevin</creator><scope>EVB</scope></search><sort><creationdate>20240423</creationdate><title>Dynamically federated data breach detection</title><author>Qiao, Mu ; Jadav, Divyesh ; Butler, Eric Kevin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11968221B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Qiao, Mu</creatorcontrib><creatorcontrib>Jadav, Divyesh</creatorcontrib><creatorcontrib>Butler, Eric Kevin</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qiao, Mu</au><au>Jadav, Divyesh</au><au>Butler, Eric Kevin</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Dynamically federated data breach detection</title><date>2024-04-23</date><risdate>2024</risdate><abstract>A processor distributes, from a server, a trained supervised machine learning (ML) model and supervised and unsupervised feature information to a plurality of client devices; at each client device, trains the supervised ML model using local data to generate a local supervised ML model, constructs a local unsupervised ML model using the unsupervised feature information, and deploys the local supervised and unsupervised ML models; determining when a detection performance difference between the local supervised and unsupervised ML models reaches a threshold; identifies a proposed change to the supervised or unsupervised feature information; deploys the proposed change on one client device; responsive to determining the proposed change improves the detection performance of that client device, communicates the proposed change to a sampled set of client devices; and responsive to determining the proposed change improves the detection performance of a majority of the sampled set, communicates the proposed change to the server.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11968221B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC COMMUNICATION TECHNIQUE ELECTRICITY PHYSICS TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION |
title | Dynamically federated data breach detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A00%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Qiao,%20Mu&rft.date=2024-04-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11968221B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |