Dynamically federated data breach detection

A processor distributes, from a server, a trained supervised machine learning (ML) model and supervised and unsupervised feature information to a plurality of client devices; at each client device, trains the supervised ML model using local data to generate a local supervised ML model, constructs a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Qiao, Mu, Jadav, Divyesh, Butler, Eric Kevin
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Qiao, Mu
Jadav, Divyesh
Butler, Eric Kevin
description A processor distributes, from a server, a trained supervised machine learning (ML) model and supervised and unsupervised feature information to a plurality of client devices; at each client device, trains the supervised ML model using local data to generate a local supervised ML model, constructs a local unsupervised ML model using the unsupervised feature information, and deploys the local supervised and unsupervised ML models; determining when a detection performance difference between the local supervised and unsupervised ML models reaches a threshold; identifies a proposed change to the supervised or unsupervised feature information; deploys the proposed change on one client device; responsive to determining the proposed change improves the detection performance of that client device, communicates the proposed change to a sampled set of client devices; and responsive to determining the proposed change improves the detection performance of a majority of the sampled set, communicates the proposed change to the server.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11968221B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11968221B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11968221B23</originalsourceid><addsrcrecordid>eNrjZNB2qcxLzM1MTszJqVRIS01JLUosSU1RSEksSVRIKkpNTM5QSEktSU0uyczP42FgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8aHBhoaWZhZGRoZORsbEqAEAatMpmw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Dynamically federated data breach detection</title><source>esp@cenet</source><creator>Qiao, Mu ; Jadav, Divyesh ; Butler, Eric Kevin</creator><creatorcontrib>Qiao, Mu ; Jadav, Divyesh ; Butler, Eric Kevin</creatorcontrib><description>A processor distributes, from a server, a trained supervised machine learning (ML) model and supervised and unsupervised feature information to a plurality of client devices; at each client device, trains the supervised ML model using local data to generate a local supervised ML model, constructs a local unsupervised ML model using the unsupervised feature information, and deploys the local supervised and unsupervised ML models; determining when a detection performance difference between the local supervised and unsupervised ML models reaches a threshold; identifies a proposed change to the supervised or unsupervised feature information; deploys the proposed change on one client device; responsive to determining the proposed change improves the detection performance of that client device, communicates the proposed change to a sampled set of client devices; and responsive to determining the proposed change improves the detection performance of a majority of the sampled set, communicates the proposed change to the server.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240423&amp;DB=EPODOC&amp;CC=US&amp;NR=11968221B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240423&amp;DB=EPODOC&amp;CC=US&amp;NR=11968221B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Qiao, Mu</creatorcontrib><creatorcontrib>Jadav, Divyesh</creatorcontrib><creatorcontrib>Butler, Eric Kevin</creatorcontrib><title>Dynamically federated data breach detection</title><description>A processor distributes, from a server, a trained supervised machine learning (ML) model and supervised and unsupervised feature information to a plurality of client devices; at each client device, trains the supervised ML model using local data to generate a local supervised ML model, constructs a local unsupervised ML model using the unsupervised feature information, and deploys the local supervised and unsupervised ML models; determining when a detection performance difference between the local supervised and unsupervised ML models reaches a threshold; identifies a proposed change to the supervised or unsupervised feature information; deploys the proposed change on one client device; responsive to determining the proposed change improves the detection performance of that client device, communicates the proposed change to a sampled set of client devices; and responsive to determining the proposed change improves the detection performance of a majority of the sampled set, communicates the proposed change to the server.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNB2qcxLzM1MTszJqVRIS01JLUosSU1RSEksSVRIKkpNTM5QSEktSU0uyczP42FgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8aHBhoaWZhZGRoZORsbEqAEAatMpmw</recordid><startdate>20240423</startdate><enddate>20240423</enddate><creator>Qiao, Mu</creator><creator>Jadav, Divyesh</creator><creator>Butler, Eric Kevin</creator><scope>EVB</scope></search><sort><creationdate>20240423</creationdate><title>Dynamically federated data breach detection</title><author>Qiao, Mu ; Jadav, Divyesh ; Butler, Eric Kevin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11968221B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Qiao, Mu</creatorcontrib><creatorcontrib>Jadav, Divyesh</creatorcontrib><creatorcontrib>Butler, Eric Kevin</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qiao, Mu</au><au>Jadav, Divyesh</au><au>Butler, Eric Kevin</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Dynamically federated data breach detection</title><date>2024-04-23</date><risdate>2024</risdate><abstract>A processor distributes, from a server, a trained supervised machine learning (ML) model and supervised and unsupervised feature information to a plurality of client devices; at each client device, trains the supervised ML model using local data to generate a local supervised ML model, constructs a local unsupervised ML model using the unsupervised feature information, and deploys the local supervised and unsupervised ML models; determining when a detection performance difference between the local supervised and unsupervised ML models reaches a threshold; identifies a proposed change to the supervised or unsupervised feature information; deploys the proposed change on one client device; responsive to determining the proposed change improves the detection performance of that client device, communicates the proposed change to a sampled set of client devices; and responsive to determining the proposed change improves the detection performance of a majority of the sampled set, communicates the proposed change to the server.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11968221B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
PHYSICS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title Dynamically federated data breach detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A00%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Qiao,%20Mu&rft.date=2024-04-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11968221B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true