System and method for automatically detecting large vessel occlusion on a computational tomography angiogram

The present subject matter discloses a system and method for detecting Large Vessel Occlusion (LVO) on a Computational Tomography Angiogram (CTA) automatically. the system comprises a vascular-territory-segmentation module, an ICV segmentation module, MCA-LVO classifier and ICA-LVO classifier. The v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Agarwal, Arjun, Kumar, Shubham, Golla, Satish Kumar, Tanamala, Swetha, Putha, Preetham, Chilamkurthy, Sasank, Warier, Prashant
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Agarwal, Arjun
Kumar, Shubham
Golla, Satish Kumar
Tanamala, Swetha
Putha, Preetham
Chilamkurthy, Sasank
Warier, Prashant
description The present subject matter discloses a system and method for detecting Large Vessel Occlusion (LVO) on a Computational Tomography Angiogram (CTA) automatically. the system comprises a vascular-territory-segmentation module, an ICV segmentation module, MCA-LVO classifier and ICA-LVO classifier. The vascular territory segmentation module is configured to receive a set of CTA images and to mark a territory of vascular segments in the ICV region for each slice of the ROI. The ICV segmentation module is configured to process each slice of the ROI. The processed slices of the ROI are combined to develop a CTA image after application of MIP and the developed CTA image is segmented into a Middle Cerebral Artery (MCA) region and an Internal Cerebral Artery (ICA) region. The MCA-LVO and ICA-LVO classifiers determine presence of the LVO on the received MCA and ICA region using Deep Learning techniques and accordingly the presence of the LVO is reported.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11967079B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11967079B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11967079B13</originalsourceid><addsrcrecordid>eNqNjEEKwjAQRbtxIeodxgMIFsHSraK4r67LkE7TwCQTmonQ2xvBAwgf_l-899cVd0tS8oBhAE86yQCjzIBZxaM6g8wLDKRk1AULjLMleFNKxCDGcE5OApQgGPExa5EkIEPxxc4Yp6V8W_fdflutRuREu19vqv399rw-DhSlpxTRUCDtX11dt-fm2LSX-vQP8wGngUMO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>System and method for automatically detecting large vessel occlusion on a computational tomography angiogram</title><source>esp@cenet</source><creator>Agarwal, Arjun ; Kumar, Shubham ; Golla, Satish Kumar ; Tanamala, Swetha ; Putha, Preetham ; Chilamkurthy, Sasank ; Warier, Prashant</creator><creatorcontrib>Agarwal, Arjun ; Kumar, Shubham ; Golla, Satish Kumar ; Tanamala, Swetha ; Putha, Preetham ; Chilamkurthy, Sasank ; Warier, Prashant</creatorcontrib><description>The present subject matter discloses a system and method for detecting Large Vessel Occlusion (LVO) on a Computational Tomography Angiogram (CTA) automatically. the system comprises a vascular-territory-segmentation module, an ICV segmentation module, MCA-LVO classifier and ICA-LVO classifier. The vascular territory segmentation module is configured to receive a set of CTA images and to mark a territory of vascular segments in the ICV region for each slice of the ROI. The ICV segmentation module is configured to process each slice of the ROI. The processed slices of the ROI are combined to develop a CTA image after application of MIP and the developed CTA image is segmented into a Middle Cerebral Artery (MCA) region and an Internal Cerebral Artery (ICA) region. The MCA-LVO and ICA-LVO classifiers determine presence of the LVO on the received MCA and ICA region using Deep Learning techniques and accordingly the presence of the LVO is reported.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240423&amp;DB=EPODOC&amp;CC=US&amp;NR=11967079B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25551,76302</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240423&amp;DB=EPODOC&amp;CC=US&amp;NR=11967079B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Agarwal, Arjun</creatorcontrib><creatorcontrib>Kumar, Shubham</creatorcontrib><creatorcontrib>Golla, Satish Kumar</creatorcontrib><creatorcontrib>Tanamala, Swetha</creatorcontrib><creatorcontrib>Putha, Preetham</creatorcontrib><creatorcontrib>Chilamkurthy, Sasank</creatorcontrib><creatorcontrib>Warier, Prashant</creatorcontrib><title>System and method for automatically detecting large vessel occlusion on a computational tomography angiogram</title><description>The present subject matter discloses a system and method for detecting Large Vessel Occlusion (LVO) on a Computational Tomography Angiogram (CTA) automatically. the system comprises a vascular-territory-segmentation module, an ICV segmentation module, MCA-LVO classifier and ICA-LVO classifier. The vascular territory segmentation module is configured to receive a set of CTA images and to mark a territory of vascular segments in the ICV region for each slice of the ROI. The ICV segmentation module is configured to process each slice of the ROI. The processed slices of the ROI are combined to develop a CTA image after application of MIP and the developed CTA image is segmented into a Middle Cerebral Artery (MCA) region and an Internal Cerebral Artery (ICA) region. The MCA-LVO and ICA-LVO classifiers determine presence of the LVO on the received MCA and ICA region using Deep Learning techniques and accordingly the presence of the LVO is reported.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjEEKwjAQRbtxIeodxgMIFsHSraK4r67LkE7TwCQTmonQ2xvBAwgf_l-899cVd0tS8oBhAE86yQCjzIBZxaM6g8wLDKRk1AULjLMleFNKxCDGcE5OApQgGPExa5EkIEPxxc4Yp6V8W_fdflutRuREu19vqv399rw-DhSlpxTRUCDtX11dt-fm2LSX-vQP8wGngUMO</recordid><startdate>20240423</startdate><enddate>20240423</enddate><creator>Agarwal, Arjun</creator><creator>Kumar, Shubham</creator><creator>Golla, Satish Kumar</creator><creator>Tanamala, Swetha</creator><creator>Putha, Preetham</creator><creator>Chilamkurthy, Sasank</creator><creator>Warier, Prashant</creator><scope>EVB</scope></search><sort><creationdate>20240423</creationdate><title>System and method for automatically detecting large vessel occlusion on a computational tomography angiogram</title><author>Agarwal, Arjun ; Kumar, Shubham ; Golla, Satish Kumar ; Tanamala, Swetha ; Putha, Preetham ; Chilamkurthy, Sasank ; Warier, Prashant</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11967079B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Agarwal, Arjun</creatorcontrib><creatorcontrib>Kumar, Shubham</creatorcontrib><creatorcontrib>Golla, Satish Kumar</creatorcontrib><creatorcontrib>Tanamala, Swetha</creatorcontrib><creatorcontrib>Putha, Preetham</creatorcontrib><creatorcontrib>Chilamkurthy, Sasank</creatorcontrib><creatorcontrib>Warier, Prashant</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Agarwal, Arjun</au><au>Kumar, Shubham</au><au>Golla, Satish Kumar</au><au>Tanamala, Swetha</au><au>Putha, Preetham</au><au>Chilamkurthy, Sasank</au><au>Warier, Prashant</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>System and method for automatically detecting large vessel occlusion on a computational tomography angiogram</title><date>2024-04-23</date><risdate>2024</risdate><abstract>The present subject matter discloses a system and method for detecting Large Vessel Occlusion (LVO) on a Computational Tomography Angiogram (CTA) automatically. the system comprises a vascular-territory-segmentation module, an ICV segmentation module, MCA-LVO classifier and ICA-LVO classifier. The vascular territory segmentation module is configured to receive a set of CTA images and to mark a territory of vascular segments in the ICV region for each slice of the ROI. The ICV segmentation module is configured to process each slice of the ROI. The processed slices of the ROI are combined to develop a CTA image after application of MIP and the developed CTA image is segmented into a Middle Cerebral Artery (MCA) region and an Internal Cerebral Artery (ICA) region. The MCA-LVO and ICA-LVO classifiers determine presence of the LVO on the received MCA and ICA region using Deep Learning techniques and accordingly the presence of the LVO is reported.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11967079B1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title System and method for automatically detecting large vessel occlusion on a computational tomography angiogram
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T02%3A01%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Agarwal,%20Arjun&rft.date=2024-04-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11967079B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true