System and method for automatically detecting large vessel occlusion on a computational tomography angiogram
The present subject matter discloses a system and method for detecting Large Vessel Occlusion (LVO) on a Computational Tomography Angiogram (CTA) automatically. the system comprises a vascular-territory-segmentation module, an ICV segmentation module, MCA-LVO classifier and ICA-LVO classifier. The v...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Agarwal, Arjun Kumar, Shubham Golla, Satish Kumar Tanamala, Swetha Putha, Preetham Chilamkurthy, Sasank Warier, Prashant |
description | The present subject matter discloses a system and method for detecting Large Vessel Occlusion (LVO) on a Computational Tomography Angiogram (CTA) automatically. the system comprises a vascular-territory-segmentation module, an ICV segmentation module, MCA-LVO classifier and ICA-LVO classifier. The vascular territory segmentation module is configured to receive a set of CTA images and to mark a territory of vascular segments in the ICV region for each slice of the ROI. The ICV segmentation module is configured to process each slice of the ROI. The processed slices of the ROI are combined to develop a CTA image after application of MIP and the developed CTA image is segmented into a Middle Cerebral Artery (MCA) region and an Internal Cerebral Artery (ICA) region. The MCA-LVO and ICA-LVO classifiers determine presence of the LVO on the received MCA and ICA region using Deep Learning techniques and accordingly the presence of the LVO is reported. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11967079B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11967079B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11967079B13</originalsourceid><addsrcrecordid>eNqNjEEKwjAQRbtxIeodxgMIFsHSraK4r67LkE7TwCQTmonQ2xvBAwgf_l-899cVd0tS8oBhAE86yQCjzIBZxaM6g8wLDKRk1AULjLMleFNKxCDGcE5OApQgGPExa5EkIEPxxc4Yp6V8W_fdflutRuREu19vqv399rw-DhSlpxTRUCDtX11dt-fm2LSX-vQP8wGngUMO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>System and method for automatically detecting large vessel occlusion on a computational tomography angiogram</title><source>esp@cenet</source><creator>Agarwal, Arjun ; Kumar, Shubham ; Golla, Satish Kumar ; Tanamala, Swetha ; Putha, Preetham ; Chilamkurthy, Sasank ; Warier, Prashant</creator><creatorcontrib>Agarwal, Arjun ; Kumar, Shubham ; Golla, Satish Kumar ; Tanamala, Swetha ; Putha, Preetham ; Chilamkurthy, Sasank ; Warier, Prashant</creatorcontrib><description>The present subject matter discloses a system and method for detecting Large Vessel Occlusion (LVO) on a Computational Tomography Angiogram (CTA) automatically. the system comprises a vascular-territory-segmentation module, an ICV segmentation module, MCA-LVO classifier and ICA-LVO classifier. The vascular territory segmentation module is configured to receive a set of CTA images and to mark a territory of vascular segments in the ICV region for each slice of the ROI. The ICV segmentation module is configured to process each slice of the ROI. The processed slices of the ROI are combined to develop a CTA image after application of MIP and the developed CTA image is segmented into a Middle Cerebral Artery (MCA) region and an Internal Cerebral Artery (ICA) region. The MCA-LVO and ICA-LVO classifiers determine presence of the LVO on the received MCA and ICA region using Deep Learning techniques and accordingly the presence of the LVO is reported.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240423&DB=EPODOC&CC=US&NR=11967079B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25551,76302</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240423&DB=EPODOC&CC=US&NR=11967079B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Agarwal, Arjun</creatorcontrib><creatorcontrib>Kumar, Shubham</creatorcontrib><creatorcontrib>Golla, Satish Kumar</creatorcontrib><creatorcontrib>Tanamala, Swetha</creatorcontrib><creatorcontrib>Putha, Preetham</creatorcontrib><creatorcontrib>Chilamkurthy, Sasank</creatorcontrib><creatorcontrib>Warier, Prashant</creatorcontrib><title>System and method for automatically detecting large vessel occlusion on a computational tomography angiogram</title><description>The present subject matter discloses a system and method for detecting Large Vessel Occlusion (LVO) on a Computational Tomography Angiogram (CTA) automatically. the system comprises a vascular-territory-segmentation module, an ICV segmentation module, MCA-LVO classifier and ICA-LVO classifier. The vascular territory segmentation module is configured to receive a set of CTA images and to mark a territory of vascular segments in the ICV region for each slice of the ROI. The ICV segmentation module is configured to process each slice of the ROI. The processed slices of the ROI are combined to develop a CTA image after application of MIP and the developed CTA image is segmented into a Middle Cerebral Artery (MCA) region and an Internal Cerebral Artery (ICA) region. The MCA-LVO and ICA-LVO classifiers determine presence of the LVO on the received MCA and ICA region using Deep Learning techniques and accordingly the presence of the LVO is reported.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjEEKwjAQRbtxIeodxgMIFsHSraK4r67LkE7TwCQTmonQ2xvBAwgf_l-899cVd0tS8oBhAE86yQCjzIBZxaM6g8wLDKRk1AULjLMleFNKxCDGcE5OApQgGPExa5EkIEPxxc4Yp6V8W_fdflutRuREu19vqv399rw-DhSlpxTRUCDtX11dt-fm2LSX-vQP8wGngUMO</recordid><startdate>20240423</startdate><enddate>20240423</enddate><creator>Agarwal, Arjun</creator><creator>Kumar, Shubham</creator><creator>Golla, Satish Kumar</creator><creator>Tanamala, Swetha</creator><creator>Putha, Preetham</creator><creator>Chilamkurthy, Sasank</creator><creator>Warier, Prashant</creator><scope>EVB</scope></search><sort><creationdate>20240423</creationdate><title>System and method for automatically detecting large vessel occlusion on a computational tomography angiogram</title><author>Agarwal, Arjun ; Kumar, Shubham ; Golla, Satish Kumar ; Tanamala, Swetha ; Putha, Preetham ; Chilamkurthy, Sasank ; Warier, Prashant</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11967079B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Agarwal, Arjun</creatorcontrib><creatorcontrib>Kumar, Shubham</creatorcontrib><creatorcontrib>Golla, Satish Kumar</creatorcontrib><creatorcontrib>Tanamala, Swetha</creatorcontrib><creatorcontrib>Putha, Preetham</creatorcontrib><creatorcontrib>Chilamkurthy, Sasank</creatorcontrib><creatorcontrib>Warier, Prashant</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Agarwal, Arjun</au><au>Kumar, Shubham</au><au>Golla, Satish Kumar</au><au>Tanamala, Swetha</au><au>Putha, Preetham</au><au>Chilamkurthy, Sasank</au><au>Warier, Prashant</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>System and method for automatically detecting large vessel occlusion on a computational tomography angiogram</title><date>2024-04-23</date><risdate>2024</risdate><abstract>The present subject matter discloses a system and method for detecting Large Vessel Occlusion (LVO) on a Computational Tomography Angiogram (CTA) automatically. the system comprises a vascular-territory-segmentation module, an ICV segmentation module, MCA-LVO classifier and ICA-LVO classifier. The vascular territory segmentation module is configured to receive a set of CTA images and to mark a territory of vascular segments in the ICV region for each slice of the ROI. The ICV segmentation module is configured to process each slice of the ROI. The processed slices of the ROI are combined to develop a CTA image after application of MIP and the developed CTA image is segmented into a Middle Cerebral Artery (MCA) region and an Internal Cerebral Artery (ICA) region. The MCA-LVO and ICA-LVO classifiers determine presence of the LVO on the received MCA and ICA region using Deep Learning techniques and accordingly the presence of the LVO is reported.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11967079B1 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | System and method for automatically detecting large vessel occlusion on a computational tomography angiogram |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T02%3A01%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Agarwal,%20Arjun&rft.date=2024-04-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11967079B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |