Systems and methods implementing an intelligent machine learning tuning system providing multiple tuned hyperparameter solutions
Disclosed examples include after a first tuning of hyperparameters in a hyperparameter space, selecting first hyperparameter values for respective ones of the hyperparameters; generating a polygonal shaped failure region in the hyperparameter space based on the first hyperparameter values; setting t...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Hayes, Patrick Clark, Scott McCourt, Michael Tee, Kevin |
description | Disclosed examples include after a first tuning of hyperparameters in a hyperparameter space, selecting first hyperparameter values for respective ones of the hyperparameters; generating a polygonal shaped failure region in the hyperparameter space based on the first hyperparameter values; setting the first hyperparameter values to failure before a second tuning of the hyperparameters; and selecting second hyperparameter values for the respective ones of the hyperparameters in a second tuning region after the second tuning of the hyperparameters in the second tuning region, the second tuning region separate from the polygonal shaped failure region. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11966860B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11966860B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11966860B23</originalsourceid><addsrcrecordid>eNqNjUEKwjAQRbtxIeodxgMIVqHoVlHcV9cSmrEdSCYhMxW68-imxQO4evD_5_158akHUfQChi141C5YAfLRoUdW4jYXQKzoHLU5AW-ajhjBoUk89tpPkMkDMYU32THwvVPKnnGAFrohYoommXyCCSS4XimwLIvZyzjB1Y-LYn293M-3DcbwRImmQUZ9PuqyPFbVodqedvt_Nl9YykuR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Systems and methods implementing an intelligent machine learning tuning system providing multiple tuned hyperparameter solutions</title><source>esp@cenet</source><creator>Hayes, Patrick ; Clark, Scott ; McCourt, Michael ; Tee, Kevin</creator><creatorcontrib>Hayes, Patrick ; Clark, Scott ; McCourt, Michael ; Tee, Kevin</creatorcontrib><description>Disclosed examples include after a first tuning of hyperparameters in a hyperparameter space, selecting first hyperparameter values for respective ones of the hyperparameters; generating a polygonal shaped failure region in the hyperparameter space based on the first hyperparameter values; setting the first hyperparameter values to failure before a second tuning of the hyperparameters; and selecting second hyperparameter values for the respective ones of the hyperparameters in a second tuning region after the second tuning of the hyperparameters in the second tuning region, the second tuning region separate from the polygonal shaped failure region.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240423&DB=EPODOC&CC=US&NR=11966860B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240423&DB=EPODOC&CC=US&NR=11966860B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Hayes, Patrick</creatorcontrib><creatorcontrib>Clark, Scott</creatorcontrib><creatorcontrib>McCourt, Michael</creatorcontrib><creatorcontrib>Tee, Kevin</creatorcontrib><title>Systems and methods implementing an intelligent machine learning tuning system providing multiple tuned hyperparameter solutions</title><description>Disclosed examples include after a first tuning of hyperparameters in a hyperparameter space, selecting first hyperparameter values for respective ones of the hyperparameters; generating a polygonal shaped failure region in the hyperparameter space based on the first hyperparameter values; setting the first hyperparameter values to failure before a second tuning of the hyperparameters; and selecting second hyperparameter values for the respective ones of the hyperparameters in a second tuning region after the second tuning of the hyperparameters in the second tuning region, the second tuning region separate from the polygonal shaped failure region.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjUEKwjAQRbtxIeodxgMIVqHoVlHcV9cSmrEdSCYhMxW68-imxQO4evD_5_158akHUfQChi141C5YAfLRoUdW4jYXQKzoHLU5AW-ajhjBoUk89tpPkMkDMYU32THwvVPKnnGAFrohYoommXyCCSS4XimwLIvZyzjB1Y-LYn293M-3DcbwRImmQUZ9PuqyPFbVodqedvt_Nl9YykuR</recordid><startdate>20240423</startdate><enddate>20240423</enddate><creator>Hayes, Patrick</creator><creator>Clark, Scott</creator><creator>McCourt, Michael</creator><creator>Tee, Kevin</creator><scope>EVB</scope></search><sort><creationdate>20240423</creationdate><title>Systems and methods implementing an intelligent machine learning tuning system providing multiple tuned hyperparameter solutions</title><author>Hayes, Patrick ; Clark, Scott ; McCourt, Michael ; Tee, Kevin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11966860B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Hayes, Patrick</creatorcontrib><creatorcontrib>Clark, Scott</creatorcontrib><creatorcontrib>McCourt, Michael</creatorcontrib><creatorcontrib>Tee, Kevin</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hayes, Patrick</au><au>Clark, Scott</au><au>McCourt, Michael</au><au>Tee, Kevin</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Systems and methods implementing an intelligent machine learning tuning system providing multiple tuned hyperparameter solutions</title><date>2024-04-23</date><risdate>2024</risdate><abstract>Disclosed examples include after a first tuning of hyperparameters in a hyperparameter space, selecting first hyperparameter values for respective ones of the hyperparameters; generating a polygonal shaped failure region in the hyperparameter space based on the first hyperparameter values; setting the first hyperparameter values to failure before a second tuning of the hyperparameters; and selecting second hyperparameter values for the respective ones of the hyperparameters in a second tuning region after the second tuning of the hyperparameters in the second tuning region, the second tuning region separate from the polygonal shaped failure region.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11966860B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | Systems and methods implementing an intelligent machine learning tuning system providing multiple tuned hyperparameter solutions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A10%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Hayes,%20Patrick&rft.date=2024-04-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11966860B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |