Systems and methods implementing an intelligent machine learning tuning system providing multiple tuned hyperparameter solutions

Disclosed examples include after a first tuning of hyperparameters in a hyperparameter space, selecting first hyperparameter values for respective ones of the hyperparameters; generating a polygonal shaped failure region in the hyperparameter space based on the first hyperparameter values; setting t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hayes, Patrick, Clark, Scott, McCourt, Michael, Tee, Kevin
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Hayes, Patrick
Clark, Scott
McCourt, Michael
Tee, Kevin
description Disclosed examples include after a first tuning of hyperparameters in a hyperparameter space, selecting first hyperparameter values for respective ones of the hyperparameters; generating a polygonal shaped failure region in the hyperparameter space based on the first hyperparameter values; setting the first hyperparameter values to failure before a second tuning of the hyperparameters; and selecting second hyperparameter values for the respective ones of the hyperparameters in a second tuning region after the second tuning of the hyperparameters in the second tuning region, the second tuning region separate from the polygonal shaped failure region.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11966860B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11966860B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11966860B23</originalsourceid><addsrcrecordid>eNqNjUEKwjAQRbtxIeodxgMIVqHoVlHcV9cSmrEdSCYhMxW68-imxQO4evD_5_158akHUfQChi141C5YAfLRoUdW4jYXQKzoHLU5AW-ajhjBoUk89tpPkMkDMYU32THwvVPKnnGAFrohYoommXyCCSS4XimwLIvZyzjB1Y-LYn293M-3DcbwRImmQUZ9PuqyPFbVodqedvt_Nl9YykuR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Systems and methods implementing an intelligent machine learning tuning system providing multiple tuned hyperparameter solutions</title><source>esp@cenet</source><creator>Hayes, Patrick ; Clark, Scott ; McCourt, Michael ; Tee, Kevin</creator><creatorcontrib>Hayes, Patrick ; Clark, Scott ; McCourt, Michael ; Tee, Kevin</creatorcontrib><description>Disclosed examples include after a first tuning of hyperparameters in a hyperparameter space, selecting first hyperparameter values for respective ones of the hyperparameters; generating a polygonal shaped failure region in the hyperparameter space based on the first hyperparameter values; setting the first hyperparameter values to failure before a second tuning of the hyperparameters; and selecting second hyperparameter values for the respective ones of the hyperparameters in a second tuning region after the second tuning of the hyperparameters in the second tuning region, the second tuning region separate from the polygonal shaped failure region.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240423&amp;DB=EPODOC&amp;CC=US&amp;NR=11966860B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240423&amp;DB=EPODOC&amp;CC=US&amp;NR=11966860B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Hayes, Patrick</creatorcontrib><creatorcontrib>Clark, Scott</creatorcontrib><creatorcontrib>McCourt, Michael</creatorcontrib><creatorcontrib>Tee, Kevin</creatorcontrib><title>Systems and methods implementing an intelligent machine learning tuning system providing multiple tuned hyperparameter solutions</title><description>Disclosed examples include after a first tuning of hyperparameters in a hyperparameter space, selecting first hyperparameter values for respective ones of the hyperparameters; generating a polygonal shaped failure region in the hyperparameter space based on the first hyperparameter values; setting the first hyperparameter values to failure before a second tuning of the hyperparameters; and selecting second hyperparameter values for the respective ones of the hyperparameters in a second tuning region after the second tuning of the hyperparameters in the second tuning region, the second tuning region separate from the polygonal shaped failure region.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjUEKwjAQRbtxIeodxgMIVqHoVlHcV9cSmrEdSCYhMxW68-imxQO4evD_5_158akHUfQChi141C5YAfLRoUdW4jYXQKzoHLU5AW-ajhjBoUk89tpPkMkDMYU32THwvVPKnnGAFrohYoommXyCCSS4XimwLIvZyzjB1Y-LYn293M-3DcbwRImmQUZ9PuqyPFbVodqedvt_Nl9YykuR</recordid><startdate>20240423</startdate><enddate>20240423</enddate><creator>Hayes, Patrick</creator><creator>Clark, Scott</creator><creator>McCourt, Michael</creator><creator>Tee, Kevin</creator><scope>EVB</scope></search><sort><creationdate>20240423</creationdate><title>Systems and methods implementing an intelligent machine learning tuning system providing multiple tuned hyperparameter solutions</title><author>Hayes, Patrick ; Clark, Scott ; McCourt, Michael ; Tee, Kevin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11966860B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Hayes, Patrick</creatorcontrib><creatorcontrib>Clark, Scott</creatorcontrib><creatorcontrib>McCourt, Michael</creatorcontrib><creatorcontrib>Tee, Kevin</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hayes, Patrick</au><au>Clark, Scott</au><au>McCourt, Michael</au><au>Tee, Kevin</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Systems and methods implementing an intelligent machine learning tuning system providing multiple tuned hyperparameter solutions</title><date>2024-04-23</date><risdate>2024</risdate><abstract>Disclosed examples include after a first tuning of hyperparameters in a hyperparameter space, selecting first hyperparameter values for respective ones of the hyperparameters; generating a polygonal shaped failure region in the hyperparameter space based on the first hyperparameter values; setting the first hyperparameter values to failure before a second tuning of the hyperparameters; and selecting second hyperparameter values for the respective ones of the hyperparameters in a second tuning region after the second tuning of the hyperparameters in the second tuning region, the second tuning region separate from the polygonal shaped failure region.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11966860B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Systems and methods implementing an intelligent machine learning tuning system providing multiple tuned hyperparameter solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A10%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Hayes,%20Patrick&rft.date=2024-04-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11966860B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true