Object location determination in frames of a video stream
A context-based object classifying model is applied to a set of object location representations (12, 14), derived from an object detection applied to a frame (10) of a video stream, to obtain a context-adapted classification probability for each object location representation (12, 14). Each object l...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Grancharov, Volodya Thimmakkondu Hariraman, Arvind |
description | A context-based object classifying model is applied to a set of object location representations (12, 14), derived from an object detection applied to a frame (10) of a video stream, to obtain a context-adapted classification probability for each object location representation (12, 14). Each object location representation (12, 14) defines a region of the frame (10) and each context-adapted classification probability represents a likelihood that the region comprises an object (11, 13). The model is generated based on object location representations from previous frames of the video stream. It is determined whether the region defined by the object location representation (12, 14) comprises an object (11, 13) based on the context-adapted classification probability and a detection probability. The detection probability is derived from the object detection and represents a likelihood that the region defined by the object location representation (12, 14) comprises an object (11, 13). |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11948356B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11948356B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11948356B23</originalsourceid><addsrcrecordid>eNrjZLD0T8pKTS5RyMlPTizJzM9TSEktSS3KzcyD8DLzFNKKEnNTixXy0xQSFcoyU1LzFYpLilITc3kYWNMSc4pTeaE0N4Oim2uIs4duakF-fGpxQWJyal5qSXxosKGhpYmFsamZk5ExMWoAM-wurw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Object location determination in frames of a video stream</title><source>esp@cenet</source><creator>Grancharov, Volodya ; Thimmakkondu Hariraman, Arvind</creator><creatorcontrib>Grancharov, Volodya ; Thimmakkondu Hariraman, Arvind</creatorcontrib><description>A context-based object classifying model is applied to a set of object location representations (12, 14), derived from an object detection applied to a frame (10) of a video stream, to obtain a context-adapted classification probability for each object location representation (12, 14). Each object location representation (12, 14) defines a region of the frame (10) and each context-adapted classification probability represents a likelihood that the region comprises an object (11, 13). The model is generated based on object location representations from previous frames of the video stream. It is determined whether the region defined by the object location representation (12, 14) comprises an object (11, 13) based on the context-adapted classification probability and a detection probability. The detection probability is derived from the object detection and represents a likelihood that the region defined by the object location representation (12, 14) comprises an object (11, 13).</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240402&DB=EPODOC&CC=US&NR=11948356B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240402&DB=EPODOC&CC=US&NR=11948356B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Grancharov, Volodya</creatorcontrib><creatorcontrib>Thimmakkondu Hariraman, Arvind</creatorcontrib><title>Object location determination in frames of a video stream</title><description>A context-based object classifying model is applied to a set of object location representations (12, 14), derived from an object detection applied to a frame (10) of a video stream, to obtain a context-adapted classification probability for each object location representation (12, 14). Each object location representation (12, 14) defines a region of the frame (10) and each context-adapted classification probability represents a likelihood that the region comprises an object (11, 13). The model is generated based on object location representations from previous frames of the video stream. It is determined whether the region defined by the object location representation (12, 14) comprises an object (11, 13) based on the context-adapted classification probability and a detection probability. The detection probability is derived from the object detection and represents a likelihood that the region defined by the object location representation (12, 14) comprises an object (11, 13).</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLD0T8pKTS5RyMlPTizJzM9TSEktSS3KzcyD8DLzFNKKEnNTixXy0xQSFcoyU1LzFYpLilITc3kYWNMSc4pTeaE0N4Oim2uIs4duakF-fGpxQWJyal5qSXxosKGhpYmFsamZk5ExMWoAM-wurw</recordid><startdate>20240402</startdate><enddate>20240402</enddate><creator>Grancharov, Volodya</creator><creator>Thimmakkondu Hariraman, Arvind</creator><scope>EVB</scope></search><sort><creationdate>20240402</creationdate><title>Object location determination in frames of a video stream</title><author>Grancharov, Volodya ; Thimmakkondu Hariraman, Arvind</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11948356B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Grancharov, Volodya</creatorcontrib><creatorcontrib>Thimmakkondu Hariraman, Arvind</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Grancharov, Volodya</au><au>Thimmakkondu Hariraman, Arvind</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Object location determination in frames of a video stream</title><date>2024-04-02</date><risdate>2024</risdate><abstract>A context-based object classifying model is applied to a set of object location representations (12, 14), derived from an object detection applied to a frame (10) of a video stream, to obtain a context-adapted classification probability for each object location representation (12, 14). Each object location representation (12, 14) defines a region of the frame (10) and each context-adapted classification probability represents a likelihood that the region comprises an object (11, 13). The model is generated based on object location representations from previous frames of the video stream. It is determined whether the region defined by the object location representation (12, 14) comprises an object (11, 13) based on the context-adapted classification probability and a detection probability. The detection probability is derived from the object detection and represents a likelihood that the region defined by the object location representation (12, 14) comprises an object (11, 13).</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11948356B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Object location determination in frames of a video stream |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T13%3A17%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Grancharov,%20Volodya&rft.date=2024-04-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11948356B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |