Object location determination in frames of a video stream

A context-based object classifying model is applied to a set of object location representations (12, 14), derived from an object detection applied to a frame (10) of a video stream, to obtain a context-adapted classification probability for each object location representation (12, 14). Each object l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Grancharov, Volodya, Thimmakkondu Hariraman, Arvind
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Grancharov, Volodya
Thimmakkondu Hariraman, Arvind
description A context-based object classifying model is applied to a set of object location representations (12, 14), derived from an object detection applied to a frame (10) of a video stream, to obtain a context-adapted classification probability for each object location representation (12, 14). Each object location representation (12, 14) defines a region of the frame (10) and each context-adapted classification probability represents a likelihood that the region comprises an object (11, 13). The model is generated based on object location representations from previous frames of the video stream. It is determined whether the region defined by the object location representation (12, 14) comprises an object (11, 13) based on the context-adapted classification probability and a detection probability. The detection probability is derived from the object detection and represents a likelihood that the region defined by the object location representation (12, 14) comprises an object (11, 13).
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11948356B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11948356B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11948356B23</originalsourceid><addsrcrecordid>eNrjZLD0T8pKTS5RyMlPTizJzM9TSEktSS3KzcyD8DLzFNKKEnNTixXy0xQSFcoyU1LzFYpLilITc3kYWNMSc4pTeaE0N4Oim2uIs4duakF-fGpxQWJyal5qSXxosKGhpYmFsamZk5ExMWoAM-wurw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Object location determination in frames of a video stream</title><source>esp@cenet</source><creator>Grancharov, Volodya ; Thimmakkondu Hariraman, Arvind</creator><creatorcontrib>Grancharov, Volodya ; Thimmakkondu Hariraman, Arvind</creatorcontrib><description>A context-based object classifying model is applied to a set of object location representations (12, 14), derived from an object detection applied to a frame (10) of a video stream, to obtain a context-adapted classification probability for each object location representation (12, 14). Each object location representation (12, 14) defines a region of the frame (10) and each context-adapted classification probability represents a likelihood that the region comprises an object (11, 13). The model is generated based on object location representations from previous frames of the video stream. It is determined whether the region defined by the object location representation (12, 14) comprises an object (11, 13) based on the context-adapted classification probability and a detection probability. The detection probability is derived from the object detection and represents a likelihood that the region defined by the object location representation (12, 14) comprises an object (11, 13).</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240402&amp;DB=EPODOC&amp;CC=US&amp;NR=11948356B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240402&amp;DB=EPODOC&amp;CC=US&amp;NR=11948356B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Grancharov, Volodya</creatorcontrib><creatorcontrib>Thimmakkondu Hariraman, Arvind</creatorcontrib><title>Object location determination in frames of a video stream</title><description>A context-based object classifying model is applied to a set of object location representations (12, 14), derived from an object detection applied to a frame (10) of a video stream, to obtain a context-adapted classification probability for each object location representation (12, 14). Each object location representation (12, 14) defines a region of the frame (10) and each context-adapted classification probability represents a likelihood that the region comprises an object (11, 13). The model is generated based on object location representations from previous frames of the video stream. It is determined whether the region defined by the object location representation (12, 14) comprises an object (11, 13) based on the context-adapted classification probability and a detection probability. The detection probability is derived from the object detection and represents a likelihood that the region defined by the object location representation (12, 14) comprises an object (11, 13).</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLD0T8pKTS5RyMlPTizJzM9TSEktSS3KzcyD8DLzFNKKEnNTixXy0xQSFcoyU1LzFYpLilITc3kYWNMSc4pTeaE0N4Oim2uIs4duakF-fGpxQWJyal5qSXxosKGhpYmFsamZk5ExMWoAM-wurw</recordid><startdate>20240402</startdate><enddate>20240402</enddate><creator>Grancharov, Volodya</creator><creator>Thimmakkondu Hariraman, Arvind</creator><scope>EVB</scope></search><sort><creationdate>20240402</creationdate><title>Object location determination in frames of a video stream</title><author>Grancharov, Volodya ; Thimmakkondu Hariraman, Arvind</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11948356B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Grancharov, Volodya</creatorcontrib><creatorcontrib>Thimmakkondu Hariraman, Arvind</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Grancharov, Volodya</au><au>Thimmakkondu Hariraman, Arvind</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Object location determination in frames of a video stream</title><date>2024-04-02</date><risdate>2024</risdate><abstract>A context-based object classifying model is applied to a set of object location representations (12, 14), derived from an object detection applied to a frame (10) of a video stream, to obtain a context-adapted classification probability for each object location representation (12, 14). Each object location representation (12, 14) defines a region of the frame (10) and each context-adapted classification probability represents a likelihood that the region comprises an object (11, 13). The model is generated based on object location representations from previous frames of the video stream. It is determined whether the region defined by the object location representation (12, 14) comprises an object (11, 13) based on the context-adapted classification probability and a detection probability. The detection probability is derived from the object detection and represents a likelihood that the region defined by the object location representation (12, 14) comprises an object (11, 13).</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11948356B2
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Object location determination in frames of a video stream
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T13%3A17%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Grancharov,%20Volodya&rft.date=2024-04-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11948356B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true