Training data augmentation via program simplification
Techniques regarding augmenting one or more training datasets for training one or more AI models are provided. For example, one or more embodiments described herein can comprise a system, which can comprise a memory that can store computer executable components. The system can also comprise a proces...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Morari, Alessandro Suneja, Sahil Zheng, Yunhui Zhuang, Yufan Laredo, Jim Alain |
description | Techniques regarding augmenting one or more training datasets for training one or more AI models are provided. For example, one or more embodiments described herein can comprise a system, which can comprise a memory that can store computer executable components. The system can also comprise a processor, operably coupled to the memory, and that can execute the computer executable components stored in the memory. The computer executable components can comprise training augmentation component that can generate an augmented training dataset for training an artificial intelligence model by extracting a simplified source code sample from a source code sample comprised within a training dataset. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11947940B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11947940B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11947940B23</originalsourceid><addsrcrecordid>eNrjZDANKUrMzMvMS1dISSxJVEgsTc9NzStJLMnMz1Moy0xUKCjKTy9KzFUozswtyMlMy0wGS_EwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTk1LzUkvjQYENDSxNzSxMDJyNjYtQAAKQuLes</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Training data augmentation via program simplification</title><source>esp@cenet</source><creator>Morari, Alessandro ; Suneja, Sahil ; Zheng, Yunhui ; Zhuang, Yufan ; Laredo, Jim Alain</creator><creatorcontrib>Morari, Alessandro ; Suneja, Sahil ; Zheng, Yunhui ; Zhuang, Yufan ; Laredo, Jim Alain</creatorcontrib><description>Techniques regarding augmenting one or more training datasets for training one or more AI models are provided. For example, one or more embodiments described herein can comprise a system, which can comprise a memory that can store computer executable components. The system can also comprise a processor, operably coupled to the memory, and that can execute the computer executable components stored in the memory. The computer executable components can comprise training augmentation component that can generate an augmented training dataset for training an artificial intelligence model by extracting a simplified source code sample from a source code sample comprised within a training dataset.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240402&DB=EPODOC&CC=US&NR=11947940B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240402&DB=EPODOC&CC=US&NR=11947940B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Morari, Alessandro</creatorcontrib><creatorcontrib>Suneja, Sahil</creatorcontrib><creatorcontrib>Zheng, Yunhui</creatorcontrib><creatorcontrib>Zhuang, Yufan</creatorcontrib><creatorcontrib>Laredo, Jim Alain</creatorcontrib><title>Training data augmentation via program simplification</title><description>Techniques regarding augmenting one or more training datasets for training one or more AI models are provided. For example, one or more embodiments described herein can comprise a system, which can comprise a memory that can store computer executable components. The system can also comprise a processor, operably coupled to the memory, and that can execute the computer executable components stored in the memory. The computer executable components can comprise training augmentation component that can generate an augmented training dataset for training an artificial intelligence model by extracting a simplified source code sample from a source code sample comprised within a training dataset.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDANKUrMzMvMS1dISSxJVEgsTc9NzStJLMnMz1Moy0xUKCjKTy9KzFUozswtyMlMy0wGS_EwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTk1LzUkvjQYENDSxNzSxMDJyNjYtQAAKQuLes</recordid><startdate>20240402</startdate><enddate>20240402</enddate><creator>Morari, Alessandro</creator><creator>Suneja, Sahil</creator><creator>Zheng, Yunhui</creator><creator>Zhuang, Yufan</creator><creator>Laredo, Jim Alain</creator><scope>EVB</scope></search><sort><creationdate>20240402</creationdate><title>Training data augmentation via program simplification</title><author>Morari, Alessandro ; Suneja, Sahil ; Zheng, Yunhui ; Zhuang, Yufan ; Laredo, Jim Alain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11947940B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Morari, Alessandro</creatorcontrib><creatorcontrib>Suneja, Sahil</creatorcontrib><creatorcontrib>Zheng, Yunhui</creatorcontrib><creatorcontrib>Zhuang, Yufan</creatorcontrib><creatorcontrib>Laredo, Jim Alain</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Morari, Alessandro</au><au>Suneja, Sahil</au><au>Zheng, Yunhui</au><au>Zhuang, Yufan</au><au>Laredo, Jim Alain</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Training data augmentation via program simplification</title><date>2024-04-02</date><risdate>2024</risdate><abstract>Techniques regarding augmenting one or more training datasets for training one or more AI models are provided. For example, one or more embodiments described herein can comprise a system, which can comprise a memory that can store computer executable components. The system can also comprise a processor, operably coupled to the memory, and that can execute the computer executable components stored in the memory. The computer executable components can comprise training augmentation component that can generate an augmented training dataset for training an artificial intelligence model by extracting a simplified source code sample from a source code sample comprised within a training dataset.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11947940B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Training data augmentation via program simplification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A24%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Morari,%20Alessandro&rft.date=2024-04-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11947940B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |