Automation method of AI-based diagnostic technology for equipment application

An automation method of an artificial intelligence (AI)-based diagnostic technology for equipment application includes receiving one or more pieces of data among vibration data, noise data, and controller area network (CAN) data, a data input processing operation of trimming the input data, an opera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jin, Jae-Min, Lee, Dong-Chul, Jung, In-Soo, Lee, Seung-Hyun
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Jin, Jae-Min
Lee, Dong-Chul
Jung, In-Soo
Lee, Seung-Hyun
description An automation method of an artificial intelligence (AI)-based diagnostic technology for equipment application includes receiving one or more pieces of data among vibration data, noise data, and controller area network (CAN) data, a data input processing operation of trimming the input data, an operation of extracting features from the trimmed data, setting a setting value of a hyper-parameter with respect to the one or more pieces of data thereamong, and generating a total of N models to include both of machine learning (ML) and deep learning (DL) as N individual models and generating ensemble prediction model structures for the N individual models. As a parameter updating is being proceeded due to the hyper-parameter so as to minimize values of cost functions of the N individual models, a reward for model accuracy performance is optimized and the ensemble prediction model structures of the N individual models change.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11941923B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11941923B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11941923B23</originalsourceid><addsrcrecordid>eNrjZPB1LC3Jz00syczPU8hNLcnIT1HIT1Nw9NRNSixOTVFIyUxMz8svLslMVihJTc7Iy8_JT69USMsvUkgtLM0syE3NK1FILCjIyUwGG8HDwJqWmFOcyguluRkU3VxDnD10Uwvy41OLCxKTU_NSS-JDgw0NLU0MLY2MnYyMiVEDAPGZNqU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Automation method of AI-based diagnostic technology for equipment application</title><source>esp@cenet</source><creator>Jin, Jae-Min ; Lee, Dong-Chul ; Jung, In-Soo ; Lee, Seung-Hyun</creator><creatorcontrib>Jin, Jae-Min ; Lee, Dong-Chul ; Jung, In-Soo ; Lee, Seung-Hyun</creatorcontrib><description>An automation method of an artificial intelligence (AI)-based diagnostic technology for equipment application includes receiving one or more pieces of data among vibration data, noise data, and controller area network (CAN) data, a data input processing operation of trimming the input data, an operation of extracting features from the trimmed data, setting a setting value of a hyper-parameter with respect to the one or more pieces of data thereamong, and generating a total of N models to include both of machine learning (ML) and deep learning (DL) as N individual models and generating ensemble prediction model structures for the N individual models. As a parameter updating is being proceeded due to the hyper-parameter so as to minimize values of cost functions of the N individual models, a reward for model accuracy performance is optimized and the ensemble prediction model structures of the N individual models change.</description><language>eng</language><subject>ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDEDFOR ELSEWHERE ; CALCULATING ; CHECKING-DEVICES ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; GENERATING RANDOM NUMBERS ; PHYSICS ; REGISTERING OR INDICATING THE WORKING OF MACHINES ; TIME OR ATTENDANCE REGISTERS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION ; VOTING OR LOTTERY APPARATUS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240326&amp;DB=EPODOC&amp;CC=US&amp;NR=11941923B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240326&amp;DB=EPODOC&amp;CC=US&amp;NR=11941923B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Jin, Jae-Min</creatorcontrib><creatorcontrib>Lee, Dong-Chul</creatorcontrib><creatorcontrib>Jung, In-Soo</creatorcontrib><creatorcontrib>Lee, Seung-Hyun</creatorcontrib><title>Automation method of AI-based diagnostic technology for equipment application</title><description>An automation method of an artificial intelligence (AI)-based diagnostic technology for equipment application includes receiving one or more pieces of data among vibration data, noise data, and controller area network (CAN) data, a data input processing operation of trimming the input data, an operation of extracting features from the trimmed data, setting a setting value of a hyper-parameter with respect to the one or more pieces of data thereamong, and generating a total of N models to include both of machine learning (ML) and deep learning (DL) as N individual models and generating ensemble prediction model structures for the N individual models. As a parameter updating is being proceeded due to the hyper-parameter so as to minimize values of cost functions of the N individual models, a reward for model accuracy performance is optimized and the ensemble prediction model structures of the N individual models change.</description><subject>ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDEDFOR ELSEWHERE</subject><subject>CALCULATING</subject><subject>CHECKING-DEVICES</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>GENERATING RANDOM NUMBERS</subject><subject>PHYSICS</subject><subject>REGISTERING OR INDICATING THE WORKING OF MACHINES</subject><subject>TIME OR ATTENDANCE REGISTERS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><subject>VOTING OR LOTTERY APPARATUS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPB1LC3Jz00syczPU8hNLcnIT1HIT1Nw9NRNSixOTVFIyUxMz8svLslMVihJTc7Iy8_JT69USMsvUkgtLM0syE3NK1FILCjIyUwGG8HDwJqWmFOcyguluRkU3VxDnD10Uwvy41OLCxKTU_NSS-JDgw0NLU0MLY2MnYyMiVEDAPGZNqU</recordid><startdate>20240326</startdate><enddate>20240326</enddate><creator>Jin, Jae-Min</creator><creator>Lee, Dong-Chul</creator><creator>Jung, In-Soo</creator><creator>Lee, Seung-Hyun</creator><scope>EVB</scope></search><sort><creationdate>20240326</creationdate><title>Automation method of AI-based diagnostic technology for equipment application</title><author>Jin, Jae-Min ; Lee, Dong-Chul ; Jung, In-Soo ; Lee, Seung-Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11941923B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDEDFOR ELSEWHERE</topic><topic>CALCULATING</topic><topic>CHECKING-DEVICES</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>GENERATING RANDOM NUMBERS</topic><topic>PHYSICS</topic><topic>REGISTERING OR INDICATING THE WORKING OF MACHINES</topic><topic>TIME OR ATTENDANCE REGISTERS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><topic>VOTING OR LOTTERY APPARATUS</topic><toplevel>online_resources</toplevel><creatorcontrib>Jin, Jae-Min</creatorcontrib><creatorcontrib>Lee, Dong-Chul</creatorcontrib><creatorcontrib>Jung, In-Soo</creatorcontrib><creatorcontrib>Lee, Seung-Hyun</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jin, Jae-Min</au><au>Lee, Dong-Chul</au><au>Jung, In-Soo</au><au>Lee, Seung-Hyun</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Automation method of AI-based diagnostic technology for equipment application</title><date>2024-03-26</date><risdate>2024</risdate><abstract>An automation method of an artificial intelligence (AI)-based diagnostic technology for equipment application includes receiving one or more pieces of data among vibration data, noise data, and controller area network (CAN) data, a data input processing operation of trimming the input data, an operation of extracting features from the trimmed data, setting a setting value of a hyper-parameter with respect to the one or more pieces of data thereamong, and generating a total of N models to include both of machine learning (ML) and deep learning (DL) as N individual models and generating ensemble prediction model structures for the N individual models. As a parameter updating is being proceeded due to the hyper-parameter so as to minimize values of cost functions of the N individual models, a reward for model accuracy performance is optimized and the ensemble prediction model structures of the N individual models change.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11941923B2
source esp@cenet
subjects ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDEDFOR ELSEWHERE
CALCULATING
CHECKING-DEVICES
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
GENERATING RANDOM NUMBERS
PHYSICS
REGISTERING OR INDICATING THE WORKING OF MACHINES
TIME OR ATTENDANCE REGISTERS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
VOTING OR LOTTERY APPARATUS
title Automation method of AI-based diagnostic technology for equipment application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A32%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Jin,%20Jae-Min&rft.date=2024-03-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11941923B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true