Methods, systems, and apparatuses for user-understandable explainable learning models

Methods, systems, and apparatuses to build an explainable user output to receive input feature data by a neural network of multiple layers of an original classifier; determine a semantic function to label data samples with semantic categories; determine a semantic accuracy for each layer of the orig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Baltaxe, Michael, Goldman-Shenhar, Claudia V
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Baltaxe, Michael
Goldman-Shenhar, Claudia V
description Methods, systems, and apparatuses to build an explainable user output to receive input feature data by a neural network of multiple layers of an original classifier; determine a semantic function to label data samples with semantic categories; determine a semantic accuracy for each layer of the original classifier within the neural network; compare each layer based on results from the comparison of the semantic accuracy; designate a layer based on an amount of computed semantic accuracy; extend the designated layer by a category branch to the neural network to extract semantic data samples from the semantic content to train a set of new connections of an explainable classifier to compute a set of output explanations with an accuracy measure associated each output explanation for each semantic category of the plurality of semantic categories, and compare the accuracy measure for each output explanation to generate the output explanation in a user understandable format.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11934957B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11934957B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11934957B23</originalsourceid><addsrcrecordid>eNqNyrEKwkAQhOE0FqK-w9qbIkYJaRXFxkpTh9WbaOCyd9xeQN_eQ3wAq_lg_mnWnBGfzuiK9K0RQwKLIfaeA8dRodS5QAkhH8UgaEw_3ywIL2-5l68tOEgvDxqcgdV5NunYKha_nWXL4-G6P-XwroV6vkMQ2-ZSFHW5qbfVbl3-03wAGlA59g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Methods, systems, and apparatuses for user-understandable explainable learning models</title><source>esp@cenet</source><creator>Baltaxe, Michael ; Goldman-Shenhar, Claudia V</creator><creatorcontrib>Baltaxe, Michael ; Goldman-Shenhar, Claudia V</creatorcontrib><description>Methods, systems, and apparatuses to build an explainable user output to receive input feature data by a neural network of multiple layers of an original classifier; determine a semantic function to label data samples with semantic categories; determine a semantic accuracy for each layer of the original classifier within the neural network; compare each layer based on results from the comparison of the semantic accuracy; designate a layer based on an amount of computed semantic accuracy; extend the designated layer by a category branch to the neural network to extract semantic data samples from the semantic content to train a set of new connections of an explainable classifier to compute a set of output explanations with an accuracy measure associated each output explanation for each semantic category of the plurality of semantic categories, and compare the accuracy measure for each output explanation to generate the output explanation in a user understandable format.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240319&amp;DB=EPODOC&amp;CC=US&amp;NR=11934957B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240319&amp;DB=EPODOC&amp;CC=US&amp;NR=11934957B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Baltaxe, Michael</creatorcontrib><creatorcontrib>Goldman-Shenhar, Claudia V</creatorcontrib><title>Methods, systems, and apparatuses for user-understandable explainable learning models</title><description>Methods, systems, and apparatuses to build an explainable user output to receive input feature data by a neural network of multiple layers of an original classifier; determine a semantic function to label data samples with semantic categories; determine a semantic accuracy for each layer of the original classifier within the neural network; compare each layer based on results from the comparison of the semantic accuracy; designate a layer based on an amount of computed semantic accuracy; extend the designated layer by a category branch to the neural network to extract semantic data samples from the semantic content to train a set of new connections of an explainable classifier to compute a set of output explanations with an accuracy measure associated each output explanation for each semantic category of the plurality of semantic categories, and compare the accuracy measure for each output explanation to generate the output explanation in a user understandable format.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwkAQhOE0FqK-w9qbIkYJaRXFxkpTh9WbaOCyd9xeQN_eQ3wAq_lg_mnWnBGfzuiK9K0RQwKLIfaeA8dRodS5QAkhH8UgaEw_3ywIL2-5l68tOEgvDxqcgdV5NunYKha_nWXL4-G6P-XwroV6vkMQ2-ZSFHW5qbfVbl3-03wAGlA59g</recordid><startdate>20240319</startdate><enddate>20240319</enddate><creator>Baltaxe, Michael</creator><creator>Goldman-Shenhar, Claudia V</creator><scope>EVB</scope></search><sort><creationdate>20240319</creationdate><title>Methods, systems, and apparatuses for user-understandable explainable learning models</title><author>Baltaxe, Michael ; Goldman-Shenhar, Claudia V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11934957B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Baltaxe, Michael</creatorcontrib><creatorcontrib>Goldman-Shenhar, Claudia V</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Baltaxe, Michael</au><au>Goldman-Shenhar, Claudia V</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Methods, systems, and apparatuses for user-understandable explainable learning models</title><date>2024-03-19</date><risdate>2024</risdate><abstract>Methods, systems, and apparatuses to build an explainable user output to receive input feature data by a neural network of multiple layers of an original classifier; determine a semantic function to label data samples with semantic categories; determine a semantic accuracy for each layer of the original classifier within the neural network; compare each layer based on results from the comparison of the semantic accuracy; designate a layer based on an amount of computed semantic accuracy; extend the designated layer by a category branch to the neural network to extract semantic data samples from the semantic content to train a set of new connections of an explainable classifier to compute a set of output explanations with an accuracy measure associated each output explanation for each semantic category of the plurality of semantic categories, and compare the accuracy measure for each output explanation to generate the output explanation in a user understandable format.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11934957B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Methods, systems, and apparatuses for user-understandable explainable learning models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A57%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Baltaxe,%20Michael&rft.date=2024-03-19&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11934957B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true