Open-vocabulary object detection in images
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for object detection. In one aspect, a method comprises: obtaining: (i) an image, and (ii) a set of one or more query embeddings, wherein each query embedding represents a respective category of object...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Gritsenko, Alexey Alexeevich Dosovitskiy, Alexey Weissenborn, Dirk Houlsby, Neil Matthew Tinmouth Stone, Austin Charles Minderer, Matthias Johannes Lorenz |
description | Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for object detection. In one aspect, a method comprises: obtaining: (i) an image, and (ii) a set of one or more query embeddings, wherein each query embedding represents a respective category of object; processing the image and the set of query embeddings using an object detection neural network to generate object detection data for the image, comprising: processing the image using an image encoding subnetwork of the object detection neural network to generate a set of object embeddings; processing each object embedding using a localization subnetwork to generate localization data defining a corresponding region of the image; and processing: (i) the set of object embeddings, and (ii) the set of query embeddings, using a classification subnetwork to generate, for each object embedding, a respective classification score distribution over the set of query embeddings. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11928854B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11928854B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11928854B23</originalsourceid><addsrcrecordid>eNrjZNDyL0jN0y3LT05MKs1JLKpUyE_KSk0uUUhJLQFSmfl5CplAlJuYnlrMw8CalphTnMoLpbkZFN1cQ5w9dFML8uNTiwsSk1PzUkviQ4MNDS2NLCxMTZyMjIlRAwA8EylL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Open-vocabulary object detection in images</title><source>esp@cenet</source><creator>Gritsenko, Alexey Alexeevich ; Dosovitskiy, Alexey ; Weissenborn, Dirk ; Houlsby, Neil Matthew Tinmouth ; Stone, Austin Charles ; Minderer, Matthias Johannes Lorenz</creator><creatorcontrib>Gritsenko, Alexey Alexeevich ; Dosovitskiy, Alexey ; Weissenborn, Dirk ; Houlsby, Neil Matthew Tinmouth ; Stone, Austin Charles ; Minderer, Matthias Johannes Lorenz</creatorcontrib><description>Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for object detection. In one aspect, a method comprises: obtaining: (i) an image, and (ii) a set of one or more query embeddings, wherein each query embedding represents a respective category of object; processing the image and the set of query embeddings using an object detection neural network to generate object detection data for the image, comprising: processing the image using an image encoding subnetwork of the object detection neural network to generate a set of object embeddings; processing each object embedding using a localization subnetwork to generate localization data defining a corresponding region of the image; and processing: (i) the set of object embeddings, and (ii) the set of query embeddings, using a classification subnetwork to generate, for each object embedding, a respective classification score distribution over the set of query embeddings.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240312&DB=EPODOC&CC=US&NR=11928854B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240312&DB=EPODOC&CC=US&NR=11928854B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Gritsenko, Alexey Alexeevich</creatorcontrib><creatorcontrib>Dosovitskiy, Alexey</creatorcontrib><creatorcontrib>Weissenborn, Dirk</creatorcontrib><creatorcontrib>Houlsby, Neil Matthew Tinmouth</creatorcontrib><creatorcontrib>Stone, Austin Charles</creatorcontrib><creatorcontrib>Minderer, Matthias Johannes Lorenz</creatorcontrib><title>Open-vocabulary object detection in images</title><description>Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for object detection. In one aspect, a method comprises: obtaining: (i) an image, and (ii) a set of one or more query embeddings, wherein each query embedding represents a respective category of object; processing the image and the set of query embeddings using an object detection neural network to generate object detection data for the image, comprising: processing the image using an image encoding subnetwork of the object detection neural network to generate a set of object embeddings; processing each object embedding using a localization subnetwork to generate localization data defining a corresponding region of the image; and processing: (i) the set of object embeddings, and (ii) the set of query embeddings, using a classification subnetwork to generate, for each object embedding, a respective classification score distribution over the set of query embeddings.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNDyL0jN0y3LT05MKs1JLKpUyE_KSk0uUUhJLQFSmfl5CplAlJuYnlrMw8CalphTnMoLpbkZFN1cQ5w9dFML8uNTiwsSk1PzUkviQ4MNDS2NLCxMTZyMjIlRAwA8EylL</recordid><startdate>20240312</startdate><enddate>20240312</enddate><creator>Gritsenko, Alexey Alexeevich</creator><creator>Dosovitskiy, Alexey</creator><creator>Weissenborn, Dirk</creator><creator>Houlsby, Neil Matthew Tinmouth</creator><creator>Stone, Austin Charles</creator><creator>Minderer, Matthias Johannes Lorenz</creator><scope>EVB</scope></search><sort><creationdate>20240312</creationdate><title>Open-vocabulary object detection in images</title><author>Gritsenko, Alexey Alexeevich ; Dosovitskiy, Alexey ; Weissenborn, Dirk ; Houlsby, Neil Matthew Tinmouth ; Stone, Austin Charles ; Minderer, Matthias Johannes Lorenz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11928854B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Gritsenko, Alexey Alexeevich</creatorcontrib><creatorcontrib>Dosovitskiy, Alexey</creatorcontrib><creatorcontrib>Weissenborn, Dirk</creatorcontrib><creatorcontrib>Houlsby, Neil Matthew Tinmouth</creatorcontrib><creatorcontrib>Stone, Austin Charles</creatorcontrib><creatorcontrib>Minderer, Matthias Johannes Lorenz</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gritsenko, Alexey Alexeevich</au><au>Dosovitskiy, Alexey</au><au>Weissenborn, Dirk</au><au>Houlsby, Neil Matthew Tinmouth</au><au>Stone, Austin Charles</au><au>Minderer, Matthias Johannes Lorenz</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Open-vocabulary object detection in images</title><date>2024-03-12</date><risdate>2024</risdate><abstract>Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for object detection. In one aspect, a method comprises: obtaining: (i) an image, and (ii) a set of one or more query embeddings, wherein each query embedding represents a respective category of object; processing the image and the set of query embeddings using an object detection neural network to generate object detection data for the image, comprising: processing the image using an image encoding subnetwork of the object detection neural network to generate a set of object embeddings; processing each object embedding using a localization subnetwork to generate localization data defining a corresponding region of the image; and processing: (i) the set of object embeddings, and (ii) the set of query embeddings, using a classification subnetwork to generate, for each object embedding, a respective classification score distribution over the set of query embeddings.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11928854B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Open-vocabulary object detection in images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A59%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Gritsenko,%20Alexey%20Alexeevich&rft.date=2024-03-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11928854B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |