Relighting system for single images

In various embodiments, a computer-implemented method of training a neural network for relighting an image is described. A first training set that includes source images and a target illumination embedding is generated, the source images having respective illuminated subjects. A second training set...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Neofytou, Alexandros, Sommerlade, Eric Chris Wolfgang, Liu, Yang, Sengupta, Sunando
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Neofytou, Alexandros
Sommerlade, Eric Chris Wolfgang
Liu, Yang
Sengupta, Sunando
description In various embodiments, a computer-implemented method of training a neural network for relighting an image is described. A first training set that includes source images and a target illumination embedding is generated, the source images having respective illuminated subjects. A second training set that includes augmented images and the target illumination embedding is generated, where the augmented images corresponding to the source images. A first autoencoder is trained using the first training set to generate a first output set that includes estimated source illumination embeddings and first reconstructed images that correspond to the source images, the reconstructed images having respective subjects that are i) from the corresponding source image, and ii) illuminated based on the target illumination embedding. A second autoencoder is trained using the second training set to generate a second output set that includes estimated augmented illumination embeddings and second reconstructed images that correspond to the augmented images.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11915398B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11915398B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11915398B23</originalsourceid><addsrcrecordid>eNrjZFAOSs3JTM8oycxLVyiuLC5JzVVIyy9SKAbyc1IVMnMT01OLeRhY0xJzilN5oTQ3g6Kba4izh25qQX58anFBYnJqXmpJfGiwoaGloamxpYWTkTExagDyoia5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Relighting system for single images</title><source>esp@cenet</source><creator>Neofytou, Alexandros ; Sommerlade, Eric Chris Wolfgang ; Liu, Yang ; Sengupta, Sunando</creator><creatorcontrib>Neofytou, Alexandros ; Sommerlade, Eric Chris Wolfgang ; Liu, Yang ; Sengupta, Sunando</creatorcontrib><description>In various embodiments, a computer-implemented method of training a neural network for relighting an image is described. A first training set that includes source images and a target illumination embedding is generated, the source images having respective illuminated subjects. A second training set that includes augmented images and the target illumination embedding is generated, where the augmented images corresponding to the source images. A first autoencoder is trained using the first training set to generate a first output set that includes estimated source illumination embeddings and first reconstructed images that correspond to the source images, the reconstructed images having respective subjects that are i) from the corresponding source image, and ii) illuminated based on the target illumination embedding. A second autoencoder is trained using the second training set to generate a second output set that includes estimated augmented illumination embeddings and second reconstructed images that correspond to the augmented images.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240227&amp;DB=EPODOC&amp;CC=US&amp;NR=11915398B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240227&amp;DB=EPODOC&amp;CC=US&amp;NR=11915398B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Neofytou, Alexandros</creatorcontrib><creatorcontrib>Sommerlade, Eric Chris Wolfgang</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Sengupta, Sunando</creatorcontrib><title>Relighting system for single images</title><description>In various embodiments, a computer-implemented method of training a neural network for relighting an image is described. A first training set that includes source images and a target illumination embedding is generated, the source images having respective illuminated subjects. A second training set that includes augmented images and the target illumination embedding is generated, where the augmented images corresponding to the source images. A first autoencoder is trained using the first training set to generate a first output set that includes estimated source illumination embeddings and first reconstructed images that correspond to the source images, the reconstructed images having respective subjects that are i) from the corresponding source image, and ii) illuminated based on the target illumination embedding. A second autoencoder is trained using the second training set to generate a second output set that includes estimated augmented illumination embeddings and second reconstructed images that correspond to the augmented images.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFAOSs3JTM8oycxLVyiuLC5JzVVIyy9SKAbyc1IVMnMT01OLeRhY0xJzilN5oTQ3g6Kba4izh25qQX58anFBYnJqXmpJfGiwoaGloamxpYWTkTExagDyoia5</recordid><startdate>20240227</startdate><enddate>20240227</enddate><creator>Neofytou, Alexandros</creator><creator>Sommerlade, Eric Chris Wolfgang</creator><creator>Liu, Yang</creator><creator>Sengupta, Sunando</creator><scope>EVB</scope></search><sort><creationdate>20240227</creationdate><title>Relighting system for single images</title><author>Neofytou, Alexandros ; Sommerlade, Eric Chris Wolfgang ; Liu, Yang ; Sengupta, Sunando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11915398B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Neofytou, Alexandros</creatorcontrib><creatorcontrib>Sommerlade, Eric Chris Wolfgang</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Sengupta, Sunando</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Neofytou, Alexandros</au><au>Sommerlade, Eric Chris Wolfgang</au><au>Liu, Yang</au><au>Sengupta, Sunando</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Relighting system for single images</title><date>2024-02-27</date><risdate>2024</risdate><abstract>In various embodiments, a computer-implemented method of training a neural network for relighting an image is described. A first training set that includes source images and a target illumination embedding is generated, the source images having respective illuminated subjects. A second training set that includes augmented images and the target illumination embedding is generated, where the augmented images corresponding to the source images. A first autoencoder is trained using the first training set to generate a first output set that includes estimated source illumination embeddings and first reconstructed images that correspond to the source images, the reconstructed images having respective subjects that are i) from the corresponding source image, and ii) illuminated based on the target illumination embedding. A second autoencoder is trained using the second training set to generate a second output set that includes estimated augmented illumination embeddings and second reconstructed images that correspond to the augmented images.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11915398B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Relighting system for single images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T15%3A33%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Neofytou,%20Alexandros&rft.date=2024-02-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11915398B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true