Multi-modal machine-learning model training for search
Multi-modal machine-learning model training techniques for search are described that overcome conventional challenges and inefficiencies to support real time output, which is not possible in conventional training techniques. In one example, a search system is configured to support multi-modal machin...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Rao, Anup Bandigadi Sinha, Moumita Mai, Tung Thanh Lomada, Vijeth Savova, Margarita R Snai, Liron Goren Sahni, Harleen Kapilevich, Matvey Shivalingaiah, Lakshmi Menguy, Charles |
description | Multi-modal machine-learning model training techniques for search are described that overcome conventional challenges and inefficiencies to support real time output, which is not possible in conventional training techniques. In one example, a search system is configured to support multi-modal machine-learning model training. This includes use of a preview mode and an expanded mode. In the preview mode, a preview segment is generated as part of real time training of a machine learning model. In the expanded mode, the preview segment is persisted as an expanded segment that is used to train and utilize an expanded machine-learning model as part of search. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11914665B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11914665B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11914665B23</originalsourceid><addsrcrecordid>eNrjZDDzLc0pydTNzU9JzFHITUzOyMxL1c1JTSzKy8xLVwAKp-YolBQlZoK5aflFCsVAueQMHgbWtMSc4lReKM3NoOjmGuLsoZtakB-fWlyQmJyal1oSHxpsaGhpaGJmZupkZEyMGgCfFC20</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multi-modal machine-learning model training for search</title><source>esp@cenet</source><creator>Rao, Anup Bandigadi ; Sinha, Moumita ; Mai, Tung Thanh ; Lomada, Vijeth ; Savova, Margarita R ; Snai, Liron Goren ; Sahni, Harleen ; Kapilevich, Matvey ; Shivalingaiah, Lakshmi ; Menguy, Charles</creator><creatorcontrib>Rao, Anup Bandigadi ; Sinha, Moumita ; Mai, Tung Thanh ; Lomada, Vijeth ; Savova, Margarita R ; Snai, Liron Goren ; Sahni, Harleen ; Kapilevich, Matvey ; Shivalingaiah, Lakshmi ; Menguy, Charles</creatorcontrib><description>Multi-modal machine-learning model training techniques for search are described that overcome conventional challenges and inefficiencies to support real time output, which is not possible in conventional training techniques. In one example, a search system is configured to support multi-modal machine-learning model training. This includes use of a preview mode and an expanded mode. In the preview mode, a preview segment is generated as part of real time training of a machine learning model. In the expanded mode, the preview segment is persisted as an expanded segment that is used to train and utilize an expanded machine-learning model as part of search.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240227&DB=EPODOC&CC=US&NR=11914665B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25553,76306</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240227&DB=EPODOC&CC=US&NR=11914665B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Rao, Anup Bandigadi</creatorcontrib><creatorcontrib>Sinha, Moumita</creatorcontrib><creatorcontrib>Mai, Tung Thanh</creatorcontrib><creatorcontrib>Lomada, Vijeth</creatorcontrib><creatorcontrib>Savova, Margarita R</creatorcontrib><creatorcontrib>Snai, Liron Goren</creatorcontrib><creatorcontrib>Sahni, Harleen</creatorcontrib><creatorcontrib>Kapilevich, Matvey</creatorcontrib><creatorcontrib>Shivalingaiah, Lakshmi</creatorcontrib><creatorcontrib>Menguy, Charles</creatorcontrib><title>Multi-modal machine-learning model training for search</title><description>Multi-modal machine-learning model training techniques for search are described that overcome conventional challenges and inefficiencies to support real time output, which is not possible in conventional training techniques. In one example, a search system is configured to support multi-modal machine-learning model training. This includes use of a preview mode and an expanded mode. In the preview mode, a preview segment is generated as part of real time training of a machine learning model. In the expanded mode, the preview segment is persisted as an expanded segment that is used to train and utilize an expanded machine-learning model as part of search.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDDzLc0pydTNzU9JzFHITUzOyMxL1c1JTSzKy8xLVwAKp-YolBQlZoK5aflFCsVAueQMHgbWtMSc4lReKM3NoOjmGuLsoZtakB-fWlyQmJyal1oSHxpsaGhpaGJmZupkZEyMGgCfFC20</recordid><startdate>20240227</startdate><enddate>20240227</enddate><creator>Rao, Anup Bandigadi</creator><creator>Sinha, Moumita</creator><creator>Mai, Tung Thanh</creator><creator>Lomada, Vijeth</creator><creator>Savova, Margarita R</creator><creator>Snai, Liron Goren</creator><creator>Sahni, Harleen</creator><creator>Kapilevich, Matvey</creator><creator>Shivalingaiah, Lakshmi</creator><creator>Menguy, Charles</creator><scope>EVB</scope></search><sort><creationdate>20240227</creationdate><title>Multi-modal machine-learning model training for search</title><author>Rao, Anup Bandigadi ; Sinha, Moumita ; Mai, Tung Thanh ; Lomada, Vijeth ; Savova, Margarita R ; Snai, Liron Goren ; Sahni, Harleen ; Kapilevich, Matvey ; Shivalingaiah, Lakshmi ; Menguy, Charles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11914665B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Rao, Anup Bandigadi</creatorcontrib><creatorcontrib>Sinha, Moumita</creatorcontrib><creatorcontrib>Mai, Tung Thanh</creatorcontrib><creatorcontrib>Lomada, Vijeth</creatorcontrib><creatorcontrib>Savova, Margarita R</creatorcontrib><creatorcontrib>Snai, Liron Goren</creatorcontrib><creatorcontrib>Sahni, Harleen</creatorcontrib><creatorcontrib>Kapilevich, Matvey</creatorcontrib><creatorcontrib>Shivalingaiah, Lakshmi</creatorcontrib><creatorcontrib>Menguy, Charles</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rao, Anup Bandigadi</au><au>Sinha, Moumita</au><au>Mai, Tung Thanh</au><au>Lomada, Vijeth</au><au>Savova, Margarita R</au><au>Snai, Liron Goren</au><au>Sahni, Harleen</au><au>Kapilevich, Matvey</au><au>Shivalingaiah, Lakshmi</au><au>Menguy, Charles</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multi-modal machine-learning model training for search</title><date>2024-02-27</date><risdate>2024</risdate><abstract>Multi-modal machine-learning model training techniques for search are described that overcome conventional challenges and inefficiencies to support real time output, which is not possible in conventional training techniques. In one example, a search system is configured to support multi-modal machine-learning model training. This includes use of a preview mode and an expanded mode. In the preview mode, a preview segment is generated as part of real time training of a machine learning model. In the expanded mode, the preview segment is persisted as an expanded segment that is used to train and utilize an expanded machine-learning model as part of search.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11914665B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Multi-modal machine-learning model training for search |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A59%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Rao,%20Anup%20Bandigadi&rft.date=2024-02-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11914665B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |