Population-based training of machine learning models
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a machine learning model. A method includes: maintaining a plurality of training sessions; assigning, to each worker of one or more workers, a respective training session of the plurality of...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Spyra, Ola Gu, Chenjie Perel, Sagi Li, Ang Dalibard, Valentin Clement Harley, Timothy James Alexander Jaderberg, Maxwell Elliot Budden, David Gupta, Pramod |
description | Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a machine learning model. A method includes: maintaining a plurality of training sessions; assigning, to each worker of one or more workers, a respective training session of the plurality of training sessions; repeatedly performing operations until meeting one or more termination criteria, the operations comprising: receiving an updated training session from a respective worker of the one or more workers, selecting a second training session, selecting, based on comparing the updated training session and the second training session using a fitness evaluation function, either the updated training session or the second training session as a parent training session, generating a child training session from the selected parent training session, and assigning the child training session to an available worker, and selecting a candidate model to be a trained model for the machine learning model. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11907821B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11907821B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11907821B23</originalsourceid><addsrcrecordid>eNrjZDAJyC8ozUksyczP001KLE5NUSgpSszMy8xLV8hPU8hNTM7IzEtVyElNLAKL5eanpOYU8zCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSS-NBgQ0NLA3MLI0MnI2Ni1AAASostGg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Population-based training of machine learning models</title><source>esp@cenet</source><creator>Spyra, Ola ; Gu, Chenjie ; Perel, Sagi ; Li, Ang ; Dalibard, Valentin Clement ; Harley, Timothy James Alexander ; Jaderberg, Maxwell Elliot ; Budden, David ; Gupta, Pramod</creator><creatorcontrib>Spyra, Ola ; Gu, Chenjie ; Perel, Sagi ; Li, Ang ; Dalibard, Valentin Clement ; Harley, Timothy James Alexander ; Jaderberg, Maxwell Elliot ; Budden, David ; Gupta, Pramod</creatorcontrib><description>Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a machine learning model. A method includes: maintaining a plurality of training sessions; assigning, to each worker of one or more workers, a respective training session of the plurality of training sessions; repeatedly performing operations until meeting one or more termination criteria, the operations comprising: receiving an updated training session from a respective worker of the one or more workers, selecting a second training session, selecting, based on comparing the updated training session and the second training session using a fitness evaluation function, either the updated training session or the second training session as a parent training session, generating a child training session from the selected parent training session, and assigning the child training session to an available worker, and selecting a candidate model to be a trained model for the machine learning model.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240220&DB=EPODOC&CC=US&NR=11907821B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240220&DB=EPODOC&CC=US&NR=11907821B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Spyra, Ola</creatorcontrib><creatorcontrib>Gu, Chenjie</creatorcontrib><creatorcontrib>Perel, Sagi</creatorcontrib><creatorcontrib>Li, Ang</creatorcontrib><creatorcontrib>Dalibard, Valentin Clement</creatorcontrib><creatorcontrib>Harley, Timothy James Alexander</creatorcontrib><creatorcontrib>Jaderberg, Maxwell Elliot</creatorcontrib><creatorcontrib>Budden, David</creatorcontrib><creatorcontrib>Gupta, Pramod</creatorcontrib><title>Population-based training of machine learning models</title><description>Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a machine learning model. A method includes: maintaining a plurality of training sessions; assigning, to each worker of one or more workers, a respective training session of the plurality of training sessions; repeatedly performing operations until meeting one or more termination criteria, the operations comprising: receiving an updated training session from a respective worker of the one or more workers, selecting a second training session, selecting, based on comparing the updated training session and the second training session using a fitness evaluation function, either the updated training session or the second training session as a parent training session, generating a child training session from the selected parent training session, and assigning the child training session to an available worker, and selecting a candidate model to be a trained model for the machine learning model.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDAJyC8ozUksyczP001KLE5NUSgpSszMy8xLV8hPU8hNTM7IzEtVyElNLAKL5eanpOYU8zCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSS-NBgQ0NLA3MLI0MnI2Ni1AAASostGg</recordid><startdate>20240220</startdate><enddate>20240220</enddate><creator>Spyra, Ola</creator><creator>Gu, Chenjie</creator><creator>Perel, Sagi</creator><creator>Li, Ang</creator><creator>Dalibard, Valentin Clement</creator><creator>Harley, Timothy James Alexander</creator><creator>Jaderberg, Maxwell Elliot</creator><creator>Budden, David</creator><creator>Gupta, Pramod</creator><scope>EVB</scope></search><sort><creationdate>20240220</creationdate><title>Population-based training of machine learning models</title><author>Spyra, Ola ; Gu, Chenjie ; Perel, Sagi ; Li, Ang ; Dalibard, Valentin Clement ; Harley, Timothy James Alexander ; Jaderberg, Maxwell Elliot ; Budden, David ; Gupta, Pramod</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11907821B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Spyra, Ola</creatorcontrib><creatorcontrib>Gu, Chenjie</creatorcontrib><creatorcontrib>Perel, Sagi</creatorcontrib><creatorcontrib>Li, Ang</creatorcontrib><creatorcontrib>Dalibard, Valentin Clement</creatorcontrib><creatorcontrib>Harley, Timothy James Alexander</creatorcontrib><creatorcontrib>Jaderberg, Maxwell Elliot</creatorcontrib><creatorcontrib>Budden, David</creatorcontrib><creatorcontrib>Gupta, Pramod</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Spyra, Ola</au><au>Gu, Chenjie</au><au>Perel, Sagi</au><au>Li, Ang</au><au>Dalibard, Valentin Clement</au><au>Harley, Timothy James Alexander</au><au>Jaderberg, Maxwell Elliot</au><au>Budden, David</au><au>Gupta, Pramod</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Population-based training of machine learning models</title><date>2024-02-20</date><risdate>2024</risdate><abstract>Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a machine learning model. A method includes: maintaining a plurality of training sessions; assigning, to each worker of one or more workers, a respective training session of the plurality of training sessions; repeatedly performing operations until meeting one or more termination criteria, the operations comprising: receiving an updated training session from a respective worker of the one or more workers, selecting a second training session, selecting, based on comparing the updated training session and the second training session using a fitness evaluation function, either the updated training session or the second training session as a parent training session, generating a child training session from the selected parent training session, and assigning the child training session to an available worker, and selecting a candidate model to be a trained model for the machine learning model.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11907821B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Population-based training of machine learning models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A47%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Spyra,%20Ola&rft.date=2024-02-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11907821B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |