Population-based training of machine learning models

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a machine learning model. A method includes: maintaining a plurality of training sessions; assigning, to each worker of one or more workers, a respective training session of the plurality of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Spyra, Ola, Gu, Chenjie, Perel, Sagi, Li, Ang, Dalibard, Valentin Clement, Harley, Timothy James Alexander, Jaderberg, Maxwell Elliot, Budden, David, Gupta, Pramod
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Spyra, Ola
Gu, Chenjie
Perel, Sagi
Li, Ang
Dalibard, Valentin Clement
Harley, Timothy James Alexander
Jaderberg, Maxwell Elliot
Budden, David
Gupta, Pramod
description Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a machine learning model. A method includes: maintaining a plurality of training sessions; assigning, to each worker of one or more workers, a respective training session of the plurality of training sessions; repeatedly performing operations until meeting one or more termination criteria, the operations comprising: receiving an updated training session from a respective worker of the one or more workers, selecting a second training session, selecting, based on comparing the updated training session and the second training session using a fitness evaluation function, either the updated training session or the second training session as a parent training session, generating a child training session from the selected parent training session, and assigning the child training session to an available worker, and selecting a candidate model to be a trained model for the machine learning model.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11907821B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11907821B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11907821B23</originalsourceid><addsrcrecordid>eNrjZDAJyC8ozUksyczP001KLE5NUSgpSszMy8xLV8hPU8hNTM7IzEtVyElNLAKL5eanpOYU8zCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSS-NBgQ0NLA3MLI0MnI2Ni1AAASostGg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Population-based training of machine learning models</title><source>esp@cenet</source><creator>Spyra, Ola ; Gu, Chenjie ; Perel, Sagi ; Li, Ang ; Dalibard, Valentin Clement ; Harley, Timothy James Alexander ; Jaderberg, Maxwell Elliot ; Budden, David ; Gupta, Pramod</creator><creatorcontrib>Spyra, Ola ; Gu, Chenjie ; Perel, Sagi ; Li, Ang ; Dalibard, Valentin Clement ; Harley, Timothy James Alexander ; Jaderberg, Maxwell Elliot ; Budden, David ; Gupta, Pramod</creatorcontrib><description>Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a machine learning model. A method includes: maintaining a plurality of training sessions; assigning, to each worker of one or more workers, a respective training session of the plurality of training sessions; repeatedly performing operations until meeting one or more termination criteria, the operations comprising: receiving an updated training session from a respective worker of the one or more workers, selecting a second training session, selecting, based on comparing the updated training session and the second training session using a fitness evaluation function, either the updated training session or the second training session as a parent training session, generating a child training session from the selected parent training session, and assigning the child training session to an available worker, and selecting a candidate model to be a trained model for the machine learning model.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240220&amp;DB=EPODOC&amp;CC=US&amp;NR=11907821B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240220&amp;DB=EPODOC&amp;CC=US&amp;NR=11907821B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Spyra, Ola</creatorcontrib><creatorcontrib>Gu, Chenjie</creatorcontrib><creatorcontrib>Perel, Sagi</creatorcontrib><creatorcontrib>Li, Ang</creatorcontrib><creatorcontrib>Dalibard, Valentin Clement</creatorcontrib><creatorcontrib>Harley, Timothy James Alexander</creatorcontrib><creatorcontrib>Jaderberg, Maxwell Elliot</creatorcontrib><creatorcontrib>Budden, David</creatorcontrib><creatorcontrib>Gupta, Pramod</creatorcontrib><title>Population-based training of machine learning models</title><description>Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a machine learning model. A method includes: maintaining a plurality of training sessions; assigning, to each worker of one or more workers, a respective training session of the plurality of training sessions; repeatedly performing operations until meeting one or more termination criteria, the operations comprising: receiving an updated training session from a respective worker of the one or more workers, selecting a second training session, selecting, based on comparing the updated training session and the second training session using a fitness evaluation function, either the updated training session or the second training session as a parent training session, generating a child training session from the selected parent training session, and assigning the child training session to an available worker, and selecting a candidate model to be a trained model for the machine learning model.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDAJyC8ozUksyczP001KLE5NUSgpSszMy8xLV8hPU8hNTM7IzEtVyElNLAKL5eanpOYU8zCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSS-NBgQ0NLA3MLI0MnI2Ni1AAASostGg</recordid><startdate>20240220</startdate><enddate>20240220</enddate><creator>Spyra, Ola</creator><creator>Gu, Chenjie</creator><creator>Perel, Sagi</creator><creator>Li, Ang</creator><creator>Dalibard, Valentin Clement</creator><creator>Harley, Timothy James Alexander</creator><creator>Jaderberg, Maxwell Elliot</creator><creator>Budden, David</creator><creator>Gupta, Pramod</creator><scope>EVB</scope></search><sort><creationdate>20240220</creationdate><title>Population-based training of machine learning models</title><author>Spyra, Ola ; Gu, Chenjie ; Perel, Sagi ; Li, Ang ; Dalibard, Valentin Clement ; Harley, Timothy James Alexander ; Jaderberg, Maxwell Elliot ; Budden, David ; Gupta, Pramod</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11907821B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Spyra, Ola</creatorcontrib><creatorcontrib>Gu, Chenjie</creatorcontrib><creatorcontrib>Perel, Sagi</creatorcontrib><creatorcontrib>Li, Ang</creatorcontrib><creatorcontrib>Dalibard, Valentin Clement</creatorcontrib><creatorcontrib>Harley, Timothy James Alexander</creatorcontrib><creatorcontrib>Jaderberg, Maxwell Elliot</creatorcontrib><creatorcontrib>Budden, David</creatorcontrib><creatorcontrib>Gupta, Pramod</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Spyra, Ola</au><au>Gu, Chenjie</au><au>Perel, Sagi</au><au>Li, Ang</au><au>Dalibard, Valentin Clement</au><au>Harley, Timothy James Alexander</au><au>Jaderberg, Maxwell Elliot</au><au>Budden, David</au><au>Gupta, Pramod</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Population-based training of machine learning models</title><date>2024-02-20</date><risdate>2024</risdate><abstract>Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a machine learning model. A method includes: maintaining a plurality of training sessions; assigning, to each worker of one or more workers, a respective training session of the plurality of training sessions; repeatedly performing operations until meeting one or more termination criteria, the operations comprising: receiving an updated training session from a respective worker of the one or more workers, selecting a second training session, selecting, based on comparing the updated training session and the second training session using a fitness evaluation function, either the updated training session or the second training session as a parent training session, generating a child training session from the selected parent training session, and assigning the child training session to an available worker, and selecting a candidate model to be a trained model for the machine learning model.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11907821B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Population-based training of machine learning models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A47%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Spyra,%20Ola&rft.date=2024-02-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11907821B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true