Short-term traffic speed prediction and forecasting using machine learning analysis of spatiotemporal traffic speed dependencies in probe and weather data
A framework for modeling traffic speed in a transportation network analyzes both the spatial and temporal dependencies in probe-based traffic speeds, historical weather data, and forecasted weather data, using multiple machine learning models. A decentralized partial least squares (PLS) regression m...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Khoshmagham, Shayan Symes, Tiffany E Hosseini, Pouyan |
description | A framework for modeling traffic speed in a transportation network analyzes both the spatial and temporal dependencies in probe-based traffic speeds, historical weather data, and forecasted weather data, using multiple machine learning models. A decentralized partial least squares (PLS) regression model predicts short-term speed using localized, historical probe-based traffic data, and a deep learning model applies the predicted short-term speed to further estimate traffic speed at specified times and at specific locations in the transportation network for predicting traffic bottlenecks and other future traffic states. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11893883B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11893883B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11893883B23</originalsourceid><addsrcrecordid>eNqNjTEOwjAUQ7swIOAOnwN0KF3KCgKxF2b0SRwaqf2Jko8QV-G0FMTExGJLlu03LZ5tF5KWijSQJnbOG8oRsBQTrDfqgxCLJRcSDGf1cqVbfuvApvMC6sFJ3gEL94_sMwU3fvA4VQwxJO5_ri0ixEKMRyYvIypc8KHcwdohkWXleTFx3Gcsvj4rlvvdcXsoEcMZI8BAoOdTW1XNum6aerOq_-m8AKA7VAA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Short-term traffic speed prediction and forecasting using machine learning analysis of spatiotemporal traffic speed dependencies in probe and weather data</title><source>esp@cenet</source><creator>Khoshmagham, Shayan ; Symes, Tiffany E ; Hosseini, Pouyan</creator><creatorcontrib>Khoshmagham, Shayan ; Symes, Tiffany E ; Hosseini, Pouyan</creatorcontrib><description>A framework for modeling traffic speed in a transportation network analyzes both the spatial and temporal dependencies in probe-based traffic speeds, historical weather data, and forecasted weather data, using multiple machine learning models. A decentralized partial least squares (PLS) regression model predicts short-term speed using localized, historical probe-based traffic data, and a deep learning model applies the predicted short-term speed to further estimate traffic speed at specified times and at specific locations in the transportation network for predicting traffic bottlenecks and other future traffic states.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; MEASURING ; METEOROLOGY ; PHYSICS ; SIGNALLING ; TESTING ; TRAFFIC CONTROL SYSTEMS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240206&DB=EPODOC&CC=US&NR=11893883B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240206&DB=EPODOC&CC=US&NR=11893883B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Khoshmagham, Shayan</creatorcontrib><creatorcontrib>Symes, Tiffany E</creatorcontrib><creatorcontrib>Hosseini, Pouyan</creatorcontrib><title>Short-term traffic speed prediction and forecasting using machine learning analysis of spatiotemporal traffic speed dependencies in probe and weather data</title><description>A framework for modeling traffic speed in a transportation network analyzes both the spatial and temporal dependencies in probe-based traffic speeds, historical weather data, and forecasted weather data, using multiple machine learning models. A decentralized partial least squares (PLS) regression model predicts short-term speed using localized, historical probe-based traffic data, and a deep learning model applies the predicted short-term speed to further estimate traffic speed at specified times and at specific locations in the transportation network for predicting traffic bottlenecks and other future traffic states.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>MEASURING</subject><subject>METEOROLOGY</subject><subject>PHYSICS</subject><subject>SIGNALLING</subject><subject>TESTING</subject><subject>TRAFFIC CONTROL SYSTEMS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjTEOwjAUQ7swIOAOnwN0KF3KCgKxF2b0SRwaqf2Jko8QV-G0FMTExGJLlu03LZ5tF5KWijSQJnbOG8oRsBQTrDfqgxCLJRcSDGf1cqVbfuvApvMC6sFJ3gEL94_sMwU3fvA4VQwxJO5_ri0ixEKMRyYvIypc8KHcwdohkWXleTFx3Gcsvj4rlvvdcXsoEcMZI8BAoOdTW1XNum6aerOq_-m8AKA7VAA</recordid><startdate>20240206</startdate><enddate>20240206</enddate><creator>Khoshmagham, Shayan</creator><creator>Symes, Tiffany E</creator><creator>Hosseini, Pouyan</creator><scope>EVB</scope></search><sort><creationdate>20240206</creationdate><title>Short-term traffic speed prediction and forecasting using machine learning analysis of spatiotemporal traffic speed dependencies in probe and weather data</title><author>Khoshmagham, Shayan ; Symes, Tiffany E ; Hosseini, Pouyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11893883B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>MEASURING</topic><topic>METEOROLOGY</topic><topic>PHYSICS</topic><topic>SIGNALLING</topic><topic>TESTING</topic><topic>TRAFFIC CONTROL SYSTEMS</topic><toplevel>online_resources</toplevel><creatorcontrib>Khoshmagham, Shayan</creatorcontrib><creatorcontrib>Symes, Tiffany E</creatorcontrib><creatorcontrib>Hosseini, Pouyan</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khoshmagham, Shayan</au><au>Symes, Tiffany E</au><au>Hosseini, Pouyan</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Short-term traffic speed prediction and forecasting using machine learning analysis of spatiotemporal traffic speed dependencies in probe and weather data</title><date>2024-02-06</date><risdate>2024</risdate><abstract>A framework for modeling traffic speed in a transportation network analyzes both the spatial and temporal dependencies in probe-based traffic speeds, historical weather data, and forecasted weather data, using multiple machine learning models. A decentralized partial least squares (PLS) regression model predicts short-term speed using localized, historical probe-based traffic data, and a deep learning model applies the predicted short-term speed to further estimate traffic speed at specified times and at specific locations in the transportation network for predicting traffic bottlenecks and other future traffic states.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11893883B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING MEASURING METEOROLOGY PHYSICS SIGNALLING TESTING TRAFFIC CONTROL SYSTEMS |
title | Short-term traffic speed prediction and forecasting using machine learning analysis of spatiotemporal traffic speed dependencies in probe and weather data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A09%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Khoshmagham,%20Shayan&rft.date=2024-02-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11893883B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |