Learning-based 3D property extraction

Learning-based 3D property extraction can include: capturing a series of live 2D images of a participatory event including at least a portion of at least one reference visual feature of the participatory event and at least a portion of at least one object involved in the participatory event; and tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ramachandran, Neel Sesh, Sahai, Swupnil Kumar, Balamurugan, Adith, Hsu, Richard
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Ramachandran, Neel Sesh
Sahai, Swupnil Kumar
Balamurugan, Adith
Hsu, Richard
description Learning-based 3D property extraction can include: capturing a series of live 2D images of a participatory event including at least a portion of at least one reference visual feature of the participatory event and at least a portion of at least one object involved in the participatory event; and training a neural network to recognize at least one 3D property pertaining to the object in response to the live 2D images based on a set of timestamped 2D training images and 3D measurements of the object obtained during at least one prior training event for the neural network.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11893808B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11893808B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11893808B23</originalsourceid><addsrcrecordid>eNrjZFD1SU0sysvMS9dNSixOTVEwdlEoKMovSC0qqVRIrSgpSkwuyczP42FgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8aHBhoYWlsYWBhZORsbEqAEAMX4nRQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Learning-based 3D property extraction</title><source>esp@cenet</source><creator>Ramachandran, Neel Sesh ; Sahai, Swupnil Kumar ; Balamurugan, Adith ; Hsu, Richard</creator><creatorcontrib>Ramachandran, Neel Sesh ; Sahai, Swupnil Kumar ; Balamurugan, Adith ; Hsu, Richard</creatorcontrib><description>Learning-based 3D property extraction can include: capturing a series of live 2D images of a participatory event including at least a portion of at least one reference visual feature of the participatory event and at least a portion of at least one object involved in the participatory event; and training a neural network to recognize at least one 3D property pertaining to the object in response to the live 2D images based on a set of timestamped 2D training images and 3D measurements of the object obtained during at least one prior training event for the neural network.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240206&amp;DB=EPODOC&amp;CC=US&amp;NR=11893808B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240206&amp;DB=EPODOC&amp;CC=US&amp;NR=11893808B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Ramachandran, Neel Sesh</creatorcontrib><creatorcontrib>Sahai, Swupnil Kumar</creatorcontrib><creatorcontrib>Balamurugan, Adith</creatorcontrib><creatorcontrib>Hsu, Richard</creatorcontrib><title>Learning-based 3D property extraction</title><description>Learning-based 3D property extraction can include: capturing a series of live 2D images of a participatory event including at least a portion of at least one reference visual feature of the participatory event and at least a portion of at least one object involved in the participatory event; and training a neural network to recognize at least one 3D property pertaining to the object in response to the live 2D images based on a set of timestamped 2D training images and 3D measurements of the object obtained during at least one prior training event for the neural network.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFD1SU0sysvMS9dNSixOTVEwdlEoKMovSC0qqVRIrSgpSkwuyczP42FgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8aHBhoYWlsYWBhZORsbEqAEAMX4nRQ</recordid><startdate>20240206</startdate><enddate>20240206</enddate><creator>Ramachandran, Neel Sesh</creator><creator>Sahai, Swupnil Kumar</creator><creator>Balamurugan, Adith</creator><creator>Hsu, Richard</creator><scope>EVB</scope></search><sort><creationdate>20240206</creationdate><title>Learning-based 3D property extraction</title><author>Ramachandran, Neel Sesh ; Sahai, Swupnil Kumar ; Balamurugan, Adith ; Hsu, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11893808B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Ramachandran, Neel Sesh</creatorcontrib><creatorcontrib>Sahai, Swupnil Kumar</creatorcontrib><creatorcontrib>Balamurugan, Adith</creatorcontrib><creatorcontrib>Hsu, Richard</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ramachandran, Neel Sesh</au><au>Sahai, Swupnil Kumar</au><au>Balamurugan, Adith</au><au>Hsu, Richard</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Learning-based 3D property extraction</title><date>2024-02-06</date><risdate>2024</risdate><abstract>Learning-based 3D property extraction can include: capturing a series of live 2D images of a participatory event including at least a portion of at least one reference visual feature of the participatory event and at least a portion of at least one object involved in the participatory event; and training a neural network to recognize at least one 3D property pertaining to the object in response to the live 2D images based on a set of timestamped 2D training images and 3D measurements of the object obtained during at least one prior training event for the neural network.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11893808B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Learning-based 3D property extraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A32%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Ramachandran,%20Neel%20Sesh&rft.date=2024-02-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11893808B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true