Inter-processor data transfer in a machine learning accelerator, using statically scheduled instructions

A compiler generates a computer program implementing a machine learning network on a machine learning accelerator (MLA) including interconnected processing elements. The computer program includes data transfer instructions for non-colliding data transfers between the processing elements. To generate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shah, Nishit, Dhruvanarayan, Srivathsa, Kotler, Reed
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Shah, Nishit
Dhruvanarayan, Srivathsa
Kotler, Reed
description A compiler generates a computer program implementing a machine learning network on a machine learning accelerator (MLA) including interconnected processing elements. The computer program includes data transfer instructions for non-colliding data transfers between the processing elements. To generate the data transfer instructions, the compiler determines non-conflicting data transfer paths for data transfers based on a topology of the interconnections between processing elements, on dependencies of the instructions and on a duration for execution of the instructions. Each data transfer path specifies a routing and a time slot for the data transfer. The compiler generates data transfer instructions that specify routing of the data transfers and generates a static schedule that schedules execution of the data transfer instructions during the time slots for the data transfers. The static schedule also schedules execution of compute instructions for computations using transferred data that implement the machine learning network.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11886981B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11886981B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11886981B23</originalsourceid><addsrcrecordid>eNqNi7EKwkAMQLs4iPoPcbfDKUhdFUVndS4hTb2DM1eSdPDvVfADnB483ptW8SLOWg9aiM2KQoeO4IpiPSskAYQnUkzCkBlVkjwAiTizohddwWhfZY6eCHN-gVHkbszcfW5zHclTEZtXkx6z8eLHWbU8HW-Hc81DadkGJBb29n4NoWm2uybs15t_mjdV50FZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Inter-processor data transfer in a machine learning accelerator, using statically scheduled instructions</title><source>esp@cenet</source><creator>Shah, Nishit ; Dhruvanarayan, Srivathsa ; Kotler, Reed</creator><creatorcontrib>Shah, Nishit ; Dhruvanarayan, Srivathsa ; Kotler, Reed</creatorcontrib><description>A compiler generates a computer program implementing a machine learning network on a machine learning accelerator (MLA) including interconnected processing elements. The computer program includes data transfer instructions for non-colliding data transfers between the processing elements. To generate the data transfer instructions, the compiler determines non-conflicting data transfer paths for data transfers based on a topology of the interconnections between processing elements, on dependencies of the instructions and on a duration for execution of the instructions. Each data transfer path specifies a routing and a time slot for the data transfer. The compiler generates data transfer instructions that specify routing of the data transfers and generates a static schedule that schedules execution of the data transfer instructions during the time slots for the data transfers. The static schedule also schedules execution of compute instructions for computations using transferred data that implement the machine learning network.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240130&amp;DB=EPODOC&amp;CC=US&amp;NR=11886981B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240130&amp;DB=EPODOC&amp;CC=US&amp;NR=11886981B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Shah, Nishit</creatorcontrib><creatorcontrib>Dhruvanarayan, Srivathsa</creatorcontrib><creatorcontrib>Kotler, Reed</creatorcontrib><title>Inter-processor data transfer in a machine learning accelerator, using statically scheduled instructions</title><description>A compiler generates a computer program implementing a machine learning network on a machine learning accelerator (MLA) including interconnected processing elements. The computer program includes data transfer instructions for non-colliding data transfers between the processing elements. To generate the data transfer instructions, the compiler determines non-conflicting data transfer paths for data transfers based on a topology of the interconnections between processing elements, on dependencies of the instructions and on a duration for execution of the instructions. Each data transfer path specifies a routing and a time slot for the data transfer. The compiler generates data transfer instructions that specify routing of the data transfers and generates a static schedule that schedules execution of the data transfer instructions during the time slots for the data transfers. The static schedule also schedules execution of compute instructions for computations using transferred data that implement the machine learning network.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi7EKwkAMQLs4iPoPcbfDKUhdFUVndS4hTb2DM1eSdPDvVfADnB483ptW8SLOWg9aiM2KQoeO4IpiPSskAYQnUkzCkBlVkjwAiTizohddwWhfZY6eCHN-gVHkbszcfW5zHclTEZtXkx6z8eLHWbU8HW-Hc81DadkGJBb29n4NoWm2uybs15t_mjdV50FZ</recordid><startdate>20240130</startdate><enddate>20240130</enddate><creator>Shah, Nishit</creator><creator>Dhruvanarayan, Srivathsa</creator><creator>Kotler, Reed</creator><scope>EVB</scope></search><sort><creationdate>20240130</creationdate><title>Inter-processor data transfer in a machine learning accelerator, using statically scheduled instructions</title><author>Shah, Nishit ; Dhruvanarayan, Srivathsa ; Kotler, Reed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11886981B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Shah, Nishit</creatorcontrib><creatorcontrib>Dhruvanarayan, Srivathsa</creatorcontrib><creatorcontrib>Kotler, Reed</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shah, Nishit</au><au>Dhruvanarayan, Srivathsa</au><au>Kotler, Reed</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Inter-processor data transfer in a machine learning accelerator, using statically scheduled instructions</title><date>2024-01-30</date><risdate>2024</risdate><abstract>A compiler generates a computer program implementing a machine learning network on a machine learning accelerator (MLA) including interconnected processing elements. The computer program includes data transfer instructions for non-colliding data transfers between the processing elements. To generate the data transfer instructions, the compiler determines non-conflicting data transfer paths for data transfers based on a topology of the interconnections between processing elements, on dependencies of the instructions and on a duration for execution of the instructions. Each data transfer path specifies a routing and a time slot for the data transfer. The compiler generates data transfer instructions that specify routing of the data transfers and generates a static schedule that schedules execution of the data transfer instructions during the time slots for the data transfers. The static schedule also schedules execution of compute instructions for computations using transferred data that implement the machine learning network.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11886981B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Inter-processor data transfer in a machine learning accelerator, using statically scheduled instructions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T12%3A58%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Shah,%20Nishit&rft.date=2024-01-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11886981B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true