Systems and methods for information extraction accuracy analysis

Systems, apparatuses, methods, and computer program products are disclosed for automatically determining accuracy of entity recognition of text. An example method includes segmenting a service entity recognition analysis of the text and a gold entity recognition analysis of the text into common supe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cao, Menglin, Rong, Qianhui, Yang, Yang Angelina, Dabhoiwala, Aafrin, Amparan, Roberto
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Cao, Menglin
Rong, Qianhui
Yang, Yang Angelina
Dabhoiwala, Aafrin
Amparan, Roberto
description Systems, apparatuses, methods, and computer program products are disclosed for automatically determining accuracy of entity recognition of text. An example method includes segmenting a service entity recognition analysis of the text and a gold entity recognition analysis of the text into common superstrings that define entity spans. The example method further includes classifying each of the entity spans based on an accuracy of entity recognition in the service analysis of the text corresponding to the entity spans using a classification system that differentiates accurately identified but improperly bounded entities into at least three subcategories to obtain an entity accuracy classification. The example method also includes obtaining a score report based on the entity accuracy classification. The example method additionally includes performing an action set based on the entity accuracy classification.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11880657B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11880657B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11880657B13</originalsourceid><addsrcrecordid>eNrjZHAIriwuSc0tVkjMS1HITS3JyE8pVkjLL1LIzAOSuYklmfl5CqkVJUWJyWBmYnJyKZBdCVSfmFNZnFnMw8CalphTnMoLpbkZFN1cQ5w9dFML8uNTiwsSk1PzUkviQ4MNDS0sDMxMzZ0MjYlRAwAiEjI9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Systems and methods for information extraction accuracy analysis</title><source>esp@cenet</source><creator>Cao, Menglin ; Rong, Qianhui ; Yang, Yang Angelina ; Dabhoiwala, Aafrin ; Amparan, Roberto</creator><creatorcontrib>Cao, Menglin ; Rong, Qianhui ; Yang, Yang Angelina ; Dabhoiwala, Aafrin ; Amparan, Roberto</creatorcontrib><description>Systems, apparatuses, methods, and computer program products are disclosed for automatically determining accuracy of entity recognition of text. An example method includes segmenting a service entity recognition analysis of the text and a gold entity recognition analysis of the text into common superstrings that define entity spans. The example method further includes classifying each of the entity spans based on an accuracy of entity recognition in the service analysis of the text corresponding to the entity spans using a classification system that differentiates accurately identified but improperly bounded entities into at least three subcategories to obtain an entity accuracy classification. The example method also includes obtaining a score report based on the entity accuracy classification. The example method additionally includes performing an action set based on the entity accuracy classification.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240123&amp;DB=EPODOC&amp;CC=US&amp;NR=11880657B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240123&amp;DB=EPODOC&amp;CC=US&amp;NR=11880657B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Cao, Menglin</creatorcontrib><creatorcontrib>Rong, Qianhui</creatorcontrib><creatorcontrib>Yang, Yang Angelina</creatorcontrib><creatorcontrib>Dabhoiwala, Aafrin</creatorcontrib><creatorcontrib>Amparan, Roberto</creatorcontrib><title>Systems and methods for information extraction accuracy analysis</title><description>Systems, apparatuses, methods, and computer program products are disclosed for automatically determining accuracy of entity recognition of text. An example method includes segmenting a service entity recognition analysis of the text and a gold entity recognition analysis of the text into common superstrings that define entity spans. The example method further includes classifying each of the entity spans based on an accuracy of entity recognition in the service analysis of the text corresponding to the entity spans using a classification system that differentiates accurately identified but improperly bounded entities into at least three subcategories to obtain an entity accuracy classification. The example method also includes obtaining a score report based on the entity accuracy classification. The example method additionally includes performing an action set based on the entity accuracy classification.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHAIriwuSc0tVkjMS1HITS3JyE8pVkjLL1LIzAOSuYklmfl5CqkVJUWJyWBmYnJyKZBdCVSfmFNZnFnMw8CalphTnMoLpbkZFN1cQ5w9dFML8uNTiwsSk1PzUkviQ4MNDS0sDMxMzZ0MjYlRAwAiEjI9</recordid><startdate>20240123</startdate><enddate>20240123</enddate><creator>Cao, Menglin</creator><creator>Rong, Qianhui</creator><creator>Yang, Yang Angelina</creator><creator>Dabhoiwala, Aafrin</creator><creator>Amparan, Roberto</creator><scope>EVB</scope></search><sort><creationdate>20240123</creationdate><title>Systems and methods for information extraction accuracy analysis</title><author>Cao, Menglin ; Rong, Qianhui ; Yang, Yang Angelina ; Dabhoiwala, Aafrin ; Amparan, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11880657B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Cao, Menglin</creatorcontrib><creatorcontrib>Rong, Qianhui</creatorcontrib><creatorcontrib>Yang, Yang Angelina</creatorcontrib><creatorcontrib>Dabhoiwala, Aafrin</creatorcontrib><creatorcontrib>Amparan, Roberto</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cao, Menglin</au><au>Rong, Qianhui</au><au>Yang, Yang Angelina</au><au>Dabhoiwala, Aafrin</au><au>Amparan, Roberto</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Systems and methods for information extraction accuracy analysis</title><date>2024-01-23</date><risdate>2024</risdate><abstract>Systems, apparatuses, methods, and computer program products are disclosed for automatically determining accuracy of entity recognition of text. An example method includes segmenting a service entity recognition analysis of the text and a gold entity recognition analysis of the text into common superstrings that define entity spans. The example method further includes classifying each of the entity spans based on an accuracy of entity recognition in the service analysis of the text corresponding to the entity spans using a classification system that differentiates accurately identified but improperly bounded entities into at least three subcategories to obtain an entity accuracy classification. The example method also includes obtaining a score report based on the entity accuracy classification. The example method additionally includes performing an action set based on the entity accuracy classification.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11880657B1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Systems and methods for information extraction accuracy analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A29%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Cao,%20Menglin&rft.date=2024-01-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11880657B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true