Method and apparatus for employing deep learning neural network to predict management zones

A computer-implemented method for predicting a cropland data layer (CDL) for a current year includes: retrieving a first set of records from a historical CDL database, where the first set corresponds to sampled areas of a region taken over a period for a number of years; retrieving a second set of r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Brau, Ernesto, Bussmann, R. Shane, Sargent, Ethan
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Brau, Ernesto
Bussmann, R. Shane
Sargent, Ethan
description A computer-implemented method for predicting a cropland data layer (CDL) for a current year includes: retrieving a first set of records from a historical CDL database, where the first set corresponds to sampled areas of a region taken over a period for a number of years; retrieving a second set of records from a historical imagery database, where the second set corresponds to the sampled areas of the region, the period, and the number of years; employing the second set as inputs to train a deep learning network to generate the first set; retrieving a third set of records from a current imagery database, where the third set corresponds to a prescribed region, and where the third set corresponds to the time period and the current year; and using the third set as inputs and executing the trained deep learning network to generate a predicted CDL for the current year.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11880430B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11880430B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11880430B23</originalsourceid><addsrcrecordid>eNqNjDEKwkAQRdNYiHqH8QBCYixSK4qNlVpZhCH5icHNzLC7QfT0RvAAFo_Hg8-fJrcT4l1rYhkxY89xCNSoJ_Tm9NVJSzVg5MBeviUYPLtR8an-QVHJPOquitSzcIseEumtgjBPJg27gMXPs2R52F92xxVMSwTjCuNLeT1nWVGkmzzdrvN_Nh-drzwB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method and apparatus for employing deep learning neural network to predict management zones</title><source>esp@cenet</source><creator>Brau, Ernesto ; Bussmann, R. Shane ; Sargent, Ethan</creator><creatorcontrib>Brau, Ernesto ; Bussmann, R. Shane ; Sargent, Ethan</creatorcontrib><description>A computer-implemented method for predicting a cropland data layer (CDL) for a current year includes: retrieving a first set of records from a historical CDL database, where the first set corresponds to sampled areas of a region taken over a period for a number of years; retrieving a second set of records from a historical imagery database, where the second set corresponds to the sampled areas of the region, the period, and the number of years; employing the second set as inputs to train a deep learning network to generate the first set; retrieving a third set of records from a current imagery database, where the third set corresponds to a prescribed region, and where the third set corresponds to the time period and the current year; and using the third set as inputs and executing the trained deep learning network to generate a predicted CDL for the current year.</description><language>eng</language><subject>AGRICULTURE ; ANIMAL HUSBANDRY ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPSOR SEAWEED ; ELECTRIC DIGITAL DATA PROCESSING ; FISHING ; FORESTRY ; HORTICULTURE ; HUMAN NECESSITIES ; HUNTING ; PHYSICS ; TRAPPING ; WATERING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240123&amp;DB=EPODOC&amp;CC=US&amp;NR=11880430B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240123&amp;DB=EPODOC&amp;CC=US&amp;NR=11880430B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Brau, Ernesto</creatorcontrib><creatorcontrib>Bussmann, R. Shane</creatorcontrib><creatorcontrib>Sargent, Ethan</creatorcontrib><title>Method and apparatus for employing deep learning neural network to predict management zones</title><description>A computer-implemented method for predicting a cropland data layer (CDL) for a current year includes: retrieving a first set of records from a historical CDL database, where the first set corresponds to sampled areas of a region taken over a period for a number of years; retrieving a second set of records from a historical imagery database, where the second set corresponds to the sampled areas of the region, the period, and the number of years; employing the second set as inputs to train a deep learning network to generate the first set; retrieving a third set of records from a current imagery database, where the third set corresponds to a prescribed region, and where the third set corresponds to the time period and the current year; and using the third set as inputs and executing the trained deep learning network to generate a predicted CDL for the current year.</description><subject>AGRICULTURE</subject><subject>ANIMAL HUSBANDRY</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPSOR SEAWEED</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>FISHING</subject><subject>FORESTRY</subject><subject>HORTICULTURE</subject><subject>HUMAN NECESSITIES</subject><subject>HUNTING</subject><subject>PHYSICS</subject><subject>TRAPPING</subject><subject>WATERING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEKwkAQRdNYiHqH8QBCYixSK4qNlVpZhCH5icHNzLC7QfT0RvAAFo_Hg8-fJrcT4l1rYhkxY89xCNSoJ_Tm9NVJSzVg5MBeviUYPLtR8an-QVHJPOquitSzcIseEumtgjBPJg27gMXPs2R52F92xxVMSwTjCuNLeT1nWVGkmzzdrvN_Nh-drzwB</recordid><startdate>20240123</startdate><enddate>20240123</enddate><creator>Brau, Ernesto</creator><creator>Bussmann, R. Shane</creator><creator>Sargent, Ethan</creator><scope>EVB</scope></search><sort><creationdate>20240123</creationdate><title>Method and apparatus for employing deep learning neural network to predict management zones</title><author>Brau, Ernesto ; Bussmann, R. Shane ; Sargent, Ethan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11880430B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>AGRICULTURE</topic><topic>ANIMAL HUSBANDRY</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPSOR SEAWEED</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>FISHING</topic><topic>FORESTRY</topic><topic>HORTICULTURE</topic><topic>HUMAN NECESSITIES</topic><topic>HUNTING</topic><topic>PHYSICS</topic><topic>TRAPPING</topic><topic>WATERING</topic><toplevel>online_resources</toplevel><creatorcontrib>Brau, Ernesto</creatorcontrib><creatorcontrib>Bussmann, R. Shane</creatorcontrib><creatorcontrib>Sargent, Ethan</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Brau, Ernesto</au><au>Bussmann, R. Shane</au><au>Sargent, Ethan</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method and apparatus for employing deep learning neural network to predict management zones</title><date>2024-01-23</date><risdate>2024</risdate><abstract>A computer-implemented method for predicting a cropland data layer (CDL) for a current year includes: retrieving a first set of records from a historical CDL database, where the first set corresponds to sampled areas of a region taken over a period for a number of years; retrieving a second set of records from a historical imagery database, where the second set corresponds to the sampled areas of the region, the period, and the number of years; employing the second set as inputs to train a deep learning network to generate the first set; retrieving a third set of records from a current imagery database, where the third set corresponds to a prescribed region, and where the third set corresponds to the time period and the current year; and using the third set as inputs and executing the trained deep learning network to generate a predicted CDL for the current year.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11880430B2
source esp@cenet
subjects AGRICULTURE
ANIMAL HUSBANDRY
CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPSOR SEAWEED
ELECTRIC DIGITAL DATA PROCESSING
FISHING
FORESTRY
HORTICULTURE
HUMAN NECESSITIES
HUNTING
PHYSICS
TRAPPING
WATERING
title Method and apparatus for employing deep learning neural network to predict management zones
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A17%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Brau,%20Ernesto&rft.date=2024-01-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11880430B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true