Multi-target detection and tracking method, system, storage medium and application
In the multi-target detection and tracking method, lidar (2D laser scanner) scans point cloud data of surroundings and transfers the collected data to the edge server. Then, the edge server uploads the data to the cloud. After obtaining the lidar data, point clouds of footsteps are extracted through...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Chu, Dianhui Ding, Deqiong Zhou, Zhiyuan Hu, Xin Li, Zhengzuo |
description | In the multi-target detection and tracking method, lidar (2D laser scanner) scans point cloud data of surroundings and transfers the collected data to the edge server. Then, the edge server uploads the data to the cloud. After obtaining the lidar data, point clouds of footsteps are extracted through dynamic point extraction, point clustering, and random forest model, respectively. Footsteps are matched to form human tracking trajectory by using trajectory matching. After the tracking process, the walking information is published to the users, in a visual form. Meanwhile, the gait parameters are saved into files, including walking speed and step length, when human is detected. Comparing to the visual sensor based human tracking methods, the present invention employs lidar to avoid the interference of ambient light, which leads to easier implementation and larger universality, especially for multi-target scenarios. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11854307B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11854307B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11854307B23</originalsourceid><addsrcrecordid>eNqNi7sKAjEUBdNYiPoPsXfBdRWtFcXGxke9XJJjDOZFcrfw713FD7AaGGaG4nzqHNuKKRuw1GAotjFIClpyJvW0wUgPfkQ9k-VVGL4nx0wGvde289-WUnJW0ecdi8GdXMHkx5GYHvbX3bFCii1KIoUAbm-Xut6sls18vV00_zRvIyk4Rg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multi-target detection and tracking method, system, storage medium and application</title><source>esp@cenet</source><creator>Chu, Dianhui ; Ding, Deqiong ; Zhou, Zhiyuan ; Hu, Xin ; Li, Zhengzuo</creator><creatorcontrib>Chu, Dianhui ; Ding, Deqiong ; Zhou, Zhiyuan ; Hu, Xin ; Li, Zhengzuo</creatorcontrib><description>In the multi-target detection and tracking method, lidar (2D laser scanner) scans point cloud data of surroundings and transfers the collected data to the edge server. Then, the edge server uploads the data to the cloud. After obtaining the lidar data, point clouds of footsteps are extracted through dynamic point extraction, point clustering, and random forest model, respectively. Footsteps are matched to form human tracking trajectory by using trajectory matching. After the tracking process, the walking information is published to the users, in a visual form. Meanwhile, the gait parameters are saved into files, including walking speed and step length, when human is detected. Comparing to the visual sensor based human tracking methods, the present invention employs lidar to avoid the interference of ambient light, which leads to easier implementation and larger universality, especially for multi-target scenarios.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231226&DB=EPODOC&CC=US&NR=11854307B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231226&DB=EPODOC&CC=US&NR=11854307B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Chu, Dianhui</creatorcontrib><creatorcontrib>Ding, Deqiong</creatorcontrib><creatorcontrib>Zhou, Zhiyuan</creatorcontrib><creatorcontrib>Hu, Xin</creatorcontrib><creatorcontrib>Li, Zhengzuo</creatorcontrib><title>Multi-target detection and tracking method, system, storage medium and application</title><description>In the multi-target detection and tracking method, lidar (2D laser scanner) scans point cloud data of surroundings and transfers the collected data to the edge server. Then, the edge server uploads the data to the cloud. After obtaining the lidar data, point clouds of footsteps are extracted through dynamic point extraction, point clustering, and random forest model, respectively. Footsteps are matched to form human tracking trajectory by using trajectory matching. After the tracking process, the walking information is published to the users, in a visual form. Meanwhile, the gait parameters are saved into files, including walking speed and step length, when human is detected. Comparing to the visual sensor based human tracking methods, the present invention employs lidar to avoid the interference of ambient light, which leads to easier implementation and larger universality, especially for multi-target scenarios.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi7sKAjEUBdNYiPoPsXfBdRWtFcXGxke9XJJjDOZFcrfw713FD7AaGGaG4nzqHNuKKRuw1GAotjFIClpyJvW0wUgPfkQ9k-VVGL4nx0wGvde289-WUnJW0ecdi8GdXMHkx5GYHvbX3bFCii1KIoUAbm-Xut6sls18vV00_zRvIyk4Rg</recordid><startdate>20231226</startdate><enddate>20231226</enddate><creator>Chu, Dianhui</creator><creator>Ding, Deqiong</creator><creator>Zhou, Zhiyuan</creator><creator>Hu, Xin</creator><creator>Li, Zhengzuo</creator><scope>EVB</scope></search><sort><creationdate>20231226</creationdate><title>Multi-target detection and tracking method, system, storage medium and application</title><author>Chu, Dianhui ; Ding, Deqiong ; Zhou, Zhiyuan ; Hu, Xin ; Li, Zhengzuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11854307B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Chu, Dianhui</creatorcontrib><creatorcontrib>Ding, Deqiong</creatorcontrib><creatorcontrib>Zhou, Zhiyuan</creatorcontrib><creatorcontrib>Hu, Xin</creatorcontrib><creatorcontrib>Li, Zhengzuo</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chu, Dianhui</au><au>Ding, Deqiong</au><au>Zhou, Zhiyuan</au><au>Hu, Xin</au><au>Li, Zhengzuo</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multi-target detection and tracking method, system, storage medium and application</title><date>2023-12-26</date><risdate>2023</risdate><abstract>In the multi-target detection and tracking method, lidar (2D laser scanner) scans point cloud data of surroundings and transfers the collected data to the edge server. Then, the edge server uploads the data to the cloud. After obtaining the lidar data, point clouds of footsteps are extracted through dynamic point extraction, point clustering, and random forest model, respectively. Footsteps are matched to form human tracking trajectory by using trajectory matching. After the tracking process, the walking information is published to the users, in a visual form. Meanwhile, the gait parameters are saved into files, including walking speed and step length, when human is detected. Comparing to the visual sensor based human tracking methods, the present invention employs lidar to avoid the interference of ambient light, which leads to easier implementation and larger universality, especially for multi-target scenarios.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11854307B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | Multi-target detection and tracking method, system, storage medium and application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A31%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Chu,%20Dianhui&rft.date=2023-12-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11854307B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |