Multi-target detection and tracking method, system, storage medium and application

In the multi-target detection and tracking method, lidar (2D laser scanner) scans point cloud data of surroundings and transfers the collected data to the edge server. Then, the edge server uploads the data to the cloud. After obtaining the lidar data, point clouds of footsteps are extracted through...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chu, Dianhui, Ding, Deqiong, Zhou, Zhiyuan, Hu, Xin, Li, Zhengzuo
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Chu, Dianhui
Ding, Deqiong
Zhou, Zhiyuan
Hu, Xin
Li, Zhengzuo
description In the multi-target detection and tracking method, lidar (2D laser scanner) scans point cloud data of surroundings and transfers the collected data to the edge server. Then, the edge server uploads the data to the cloud. After obtaining the lidar data, point clouds of footsteps are extracted through dynamic point extraction, point clustering, and random forest model, respectively. Footsteps are matched to form human tracking trajectory by using trajectory matching. After the tracking process, the walking information is published to the users, in a visual form. Meanwhile, the gait parameters are saved into files, including walking speed and step length, when human is detected. Comparing to the visual sensor based human tracking methods, the present invention employs lidar to avoid the interference of ambient light, which leads to easier implementation and larger universality, especially for multi-target scenarios.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11854307B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11854307B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11854307B23</originalsourceid><addsrcrecordid>eNqNi7sKAjEUBdNYiPoPsXfBdRWtFcXGxke9XJJjDOZFcrfw713FD7AaGGaG4nzqHNuKKRuw1GAotjFIClpyJvW0wUgPfkQ9k-VVGL4nx0wGvde289-WUnJW0ecdi8GdXMHkx5GYHvbX3bFCii1KIoUAbm-Xut6sls18vV00_zRvIyk4Rg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multi-target detection and tracking method, system, storage medium and application</title><source>esp@cenet</source><creator>Chu, Dianhui ; Ding, Deqiong ; Zhou, Zhiyuan ; Hu, Xin ; Li, Zhengzuo</creator><creatorcontrib>Chu, Dianhui ; Ding, Deqiong ; Zhou, Zhiyuan ; Hu, Xin ; Li, Zhengzuo</creatorcontrib><description>In the multi-target detection and tracking method, lidar (2D laser scanner) scans point cloud data of surroundings and transfers the collected data to the edge server. Then, the edge server uploads the data to the cloud. After obtaining the lidar data, point clouds of footsteps are extracted through dynamic point extraction, point clustering, and random forest model, respectively. Footsteps are matched to form human tracking trajectory by using trajectory matching. After the tracking process, the walking information is published to the users, in a visual form. Meanwhile, the gait parameters are saved into files, including walking speed and step length, when human is detected. Comparing to the visual sensor based human tracking methods, the present invention employs lidar to avoid the interference of ambient light, which leads to easier implementation and larger universality, especially for multi-target scenarios.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231226&amp;DB=EPODOC&amp;CC=US&amp;NR=11854307B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231226&amp;DB=EPODOC&amp;CC=US&amp;NR=11854307B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Chu, Dianhui</creatorcontrib><creatorcontrib>Ding, Deqiong</creatorcontrib><creatorcontrib>Zhou, Zhiyuan</creatorcontrib><creatorcontrib>Hu, Xin</creatorcontrib><creatorcontrib>Li, Zhengzuo</creatorcontrib><title>Multi-target detection and tracking method, system, storage medium and application</title><description>In the multi-target detection and tracking method, lidar (2D laser scanner) scans point cloud data of surroundings and transfers the collected data to the edge server. Then, the edge server uploads the data to the cloud. After obtaining the lidar data, point clouds of footsteps are extracted through dynamic point extraction, point clustering, and random forest model, respectively. Footsteps are matched to form human tracking trajectory by using trajectory matching. After the tracking process, the walking information is published to the users, in a visual form. Meanwhile, the gait parameters are saved into files, including walking speed and step length, when human is detected. Comparing to the visual sensor based human tracking methods, the present invention employs lidar to avoid the interference of ambient light, which leads to easier implementation and larger universality, especially for multi-target scenarios.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi7sKAjEUBdNYiPoPsXfBdRWtFcXGxke9XJJjDOZFcrfw713FD7AaGGaG4nzqHNuKKRuw1GAotjFIClpyJvW0wUgPfkQ9k-VVGL4nx0wGvde289-WUnJW0ecdi8GdXMHkx5GYHvbX3bFCii1KIoUAbm-Xut6sls18vV00_zRvIyk4Rg</recordid><startdate>20231226</startdate><enddate>20231226</enddate><creator>Chu, Dianhui</creator><creator>Ding, Deqiong</creator><creator>Zhou, Zhiyuan</creator><creator>Hu, Xin</creator><creator>Li, Zhengzuo</creator><scope>EVB</scope></search><sort><creationdate>20231226</creationdate><title>Multi-target detection and tracking method, system, storage medium and application</title><author>Chu, Dianhui ; Ding, Deqiong ; Zhou, Zhiyuan ; Hu, Xin ; Li, Zhengzuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11854307B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Chu, Dianhui</creatorcontrib><creatorcontrib>Ding, Deqiong</creatorcontrib><creatorcontrib>Zhou, Zhiyuan</creatorcontrib><creatorcontrib>Hu, Xin</creatorcontrib><creatorcontrib>Li, Zhengzuo</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chu, Dianhui</au><au>Ding, Deqiong</au><au>Zhou, Zhiyuan</au><au>Hu, Xin</au><au>Li, Zhengzuo</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multi-target detection and tracking method, system, storage medium and application</title><date>2023-12-26</date><risdate>2023</risdate><abstract>In the multi-target detection and tracking method, lidar (2D laser scanner) scans point cloud data of surroundings and transfers the collected data to the edge server. Then, the edge server uploads the data to the cloud. After obtaining the lidar data, point clouds of footsteps are extracted through dynamic point extraction, point clustering, and random forest model, respectively. Footsteps are matched to form human tracking trajectory by using trajectory matching. After the tracking process, the walking information is published to the users, in a visual form. Meanwhile, the gait parameters are saved into files, including walking speed and step length, when human is detected. Comparing to the visual sensor based human tracking methods, the present invention employs lidar to avoid the interference of ambient light, which leads to easier implementation and larger universality, especially for multi-target scenarios.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11854307B2
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Multi-target detection and tracking method, system, storage medium and application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A31%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Chu,%20Dianhui&rft.date=2023-12-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11854307B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true