Prediction of faulty behaviour of a converter based on temperature estimation with machine learning algorithm

Disclosed herein is a method for predicting a faulty behaviour of an electrical converter. The method includes receiving an operation point indicator of the electrical converter indicative of an actual operation point of the electrical converter, where the electrical converter is connected to a rota...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Särkimäki, Ville, Siimesjärvi, Joni, Alkkiomáki, Olli
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Särkimäki, Ville
Siimesjärvi, Joni
Alkkiomáki, Olli
description Disclosed herein is a method for predicting a faulty behaviour of an electrical converter. The method includes receiving an operation point indicator of the electrical converter indicative of an actual operation point of the electrical converter, where the electrical converter is connected to a rotating electrical machine; receiving a measured device temperature of a power semiconductor device of the electrical converter indicative of an actual temperature of the power semiconductor device; inputting the operation point indicator as input data into a machine learning algorithm trained with historical data comprising operation point indicators and associated device temperatures, where the historical data was recorded during normal operation of a power semiconductor device; estimating an estimated device temperature with the machine learning algorithm, where the estimated device temperature represents a device temperature during a normal operation; and predicting the faulty behaviour by comparing the estimated device temperature with the measured device temperature.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11853046B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11853046B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11853046B23</originalsourceid><addsrcrecordid>eNqNjEsKwkAQBbNxIeod2gMIxqi4VhSXgrqWTvKSDMwn9HQi3t4oHsDVg6rijRN3EZSmUBM8hYoq7qy-KEfDvQmdfBhTEXwPUQjlHFHS0CpcC2HtBISoxvH34mm0IcdFYzzIgsUbXxPbOshg3DQZVWwjZr-dJPPT8XY4L9CGB2LLBTz0cb-m6W6TLdfb_Sr7p3kDv29C_Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Prediction of faulty behaviour of a converter based on temperature estimation with machine learning algorithm</title><source>esp@cenet</source><creator>Särkimäki, Ville ; Siimesjärvi, Joni ; Alkkiomáki, Olli</creator><creatorcontrib>Särkimäki, Ville ; Siimesjärvi, Joni ; Alkkiomáki, Olli</creatorcontrib><description>Disclosed herein is a method for predicting a faulty behaviour of an electrical converter. The method includes receiving an operation point indicator of the electrical converter indicative of an actual operation point of the electrical converter, where the electrical converter is connected to a rotating electrical machine; receiving a measured device temperature of a power semiconductor device of the electrical converter indicative of an actual temperature of the power semiconductor device; inputting the operation point indicator as input data into a machine learning algorithm trained with historical data comprising operation point indicators and associated device temperatures, where the historical data was recorded during normal operation of a power semiconductor device; estimating an estimated device temperature with the machine learning algorithm, where the estimated device temperature represents a device temperature during a normal operation; and predicting the faulty behaviour by comparing the estimated device temperature with the measured device temperature.</description><language>eng</language><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL ; CONTROLLING ; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS ; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS ; PHYSICS ; REGULATING</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231226&amp;DB=EPODOC&amp;CC=US&amp;NR=11853046B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231226&amp;DB=EPODOC&amp;CC=US&amp;NR=11853046B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Särkimäki, Ville</creatorcontrib><creatorcontrib>Siimesjärvi, Joni</creatorcontrib><creatorcontrib>Alkkiomáki, Olli</creatorcontrib><title>Prediction of faulty behaviour of a converter based on temperature estimation with machine learning algorithm</title><description>Disclosed herein is a method for predicting a faulty behaviour of an electrical converter. The method includes receiving an operation point indicator of the electrical converter indicative of an actual operation point of the electrical converter, where the electrical converter is connected to a rotating electrical machine; receiving a measured device temperature of a power semiconductor device of the electrical converter indicative of an actual temperature of the power semiconductor device; inputting the operation point indicator as input data into a machine learning algorithm trained with historical data comprising operation point indicators and associated device temperatures, where the historical data was recorded during normal operation of a power semiconductor device; estimating an estimated device temperature with the machine learning algorithm, where the estimated device temperature represents a device temperature during a normal operation; and predicting the faulty behaviour by comparing the estimated device temperature with the measured device temperature.</description><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL</subject><subject>CONTROLLING</subject><subject>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</subject><subject>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</subject><subject>PHYSICS</subject><subject>REGULATING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjEsKwkAQBbNxIeod2gMIxqi4VhSXgrqWTvKSDMwn9HQi3t4oHsDVg6rijRN3EZSmUBM8hYoq7qy-KEfDvQmdfBhTEXwPUQjlHFHS0CpcC2HtBISoxvH34mm0IcdFYzzIgsUbXxPbOshg3DQZVWwjZr-dJPPT8XY4L9CGB2LLBTz0cb-m6W6TLdfb_Sr7p3kDv29C_Q</recordid><startdate>20231226</startdate><enddate>20231226</enddate><creator>Särkimäki, Ville</creator><creator>Siimesjärvi, Joni</creator><creator>Alkkiomáki, Olli</creator><scope>EVB</scope></search><sort><creationdate>20231226</creationdate><title>Prediction of faulty behaviour of a converter based on temperature estimation with machine learning algorithm</title><author>Särkimäki, Ville ; Siimesjärvi, Joni ; Alkkiomáki, Olli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11853046B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CONTROL OR REGULATING SYSTEMS IN GENERAL</topic><topic>CONTROLLING</topic><topic>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</topic><topic>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</topic><topic>PHYSICS</topic><topic>REGULATING</topic><toplevel>online_resources</toplevel><creatorcontrib>Särkimäki, Ville</creatorcontrib><creatorcontrib>Siimesjärvi, Joni</creatorcontrib><creatorcontrib>Alkkiomáki, Olli</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Särkimäki, Ville</au><au>Siimesjärvi, Joni</au><au>Alkkiomáki, Olli</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Prediction of faulty behaviour of a converter based on temperature estimation with machine learning algorithm</title><date>2023-12-26</date><risdate>2023</risdate><abstract>Disclosed herein is a method for predicting a faulty behaviour of an electrical converter. The method includes receiving an operation point indicator of the electrical converter indicative of an actual operation point of the electrical converter, where the electrical converter is connected to a rotating electrical machine; receiving a measured device temperature of a power semiconductor device of the electrical converter indicative of an actual temperature of the power semiconductor device; inputting the operation point indicator as input data into a machine learning algorithm trained with historical data comprising operation point indicators and associated device temperatures, where the historical data was recorded during normal operation of a power semiconductor device; estimating an estimated device temperature with the machine learning algorithm, where the estimated device temperature represents a device temperature during a normal operation; and predicting the faulty behaviour by comparing the estimated device temperature with the measured device temperature.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11853046B2
source esp@cenet
subjects CONTROL OR REGULATING SYSTEMS IN GENERAL
CONTROLLING
FUNCTIONAL ELEMENTS OF SUCH SYSTEMS
MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS
PHYSICS
REGULATING
title Prediction of faulty behaviour of a converter based on temperature estimation with machine learning algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A01%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=S%C3%A4rkim%C3%A4ki,%20Ville&rft.date=2023-12-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11853046B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true