Prediction of faulty behaviour of a converter based on temperature estimation with machine learning algorithm
Disclosed herein is a method for predicting a faulty behaviour of an electrical converter. The method includes receiving an operation point indicator of the electrical converter indicative of an actual operation point of the electrical converter, where the electrical converter is connected to a rota...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Särkimäki, Ville Siimesjärvi, Joni Alkkiomáki, Olli |
description | Disclosed herein is a method for predicting a faulty behaviour of an electrical converter. The method includes receiving an operation point indicator of the electrical converter indicative of an actual operation point of the electrical converter, where the electrical converter is connected to a rotating electrical machine; receiving a measured device temperature of a power semiconductor device of the electrical converter indicative of an actual temperature of the power semiconductor device; inputting the operation point indicator as input data into a machine learning algorithm trained with historical data comprising operation point indicators and associated device temperatures, where the historical data was recorded during normal operation of a power semiconductor device; estimating an estimated device temperature with the machine learning algorithm, where the estimated device temperature represents a device temperature during a normal operation; and predicting the faulty behaviour by comparing the estimated device temperature with the measured device temperature. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11853046B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11853046B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11853046B23</originalsourceid><addsrcrecordid>eNqNjEsKwkAQBbNxIeod2gMIxqi4VhSXgrqWTvKSDMwn9HQi3t4oHsDVg6rijRN3EZSmUBM8hYoq7qy-KEfDvQmdfBhTEXwPUQjlHFHS0CpcC2HtBISoxvH34mm0IcdFYzzIgsUbXxPbOshg3DQZVWwjZr-dJPPT8XY4L9CGB2LLBTz0cb-m6W6TLdfb_Sr7p3kDv29C_Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Prediction of faulty behaviour of a converter based on temperature estimation with machine learning algorithm</title><source>esp@cenet</source><creator>Särkimäki, Ville ; Siimesjärvi, Joni ; Alkkiomáki, Olli</creator><creatorcontrib>Särkimäki, Ville ; Siimesjärvi, Joni ; Alkkiomáki, Olli</creatorcontrib><description>Disclosed herein is a method for predicting a faulty behaviour of an electrical converter. The method includes receiving an operation point indicator of the electrical converter indicative of an actual operation point of the electrical converter, where the electrical converter is connected to a rotating electrical machine; receiving a measured device temperature of a power semiconductor device of the electrical converter indicative of an actual temperature of the power semiconductor device; inputting the operation point indicator as input data into a machine learning algorithm trained with historical data comprising operation point indicators and associated device temperatures, where the historical data was recorded during normal operation of a power semiconductor device; estimating an estimated device temperature with the machine learning algorithm, where the estimated device temperature represents a device temperature during a normal operation; and predicting the faulty behaviour by comparing the estimated device temperature with the measured device temperature.</description><language>eng</language><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL ; CONTROLLING ; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS ; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS ; PHYSICS ; REGULATING</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231226&DB=EPODOC&CC=US&NR=11853046B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231226&DB=EPODOC&CC=US&NR=11853046B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Särkimäki, Ville</creatorcontrib><creatorcontrib>Siimesjärvi, Joni</creatorcontrib><creatorcontrib>Alkkiomáki, Olli</creatorcontrib><title>Prediction of faulty behaviour of a converter based on temperature estimation with machine learning algorithm</title><description>Disclosed herein is a method for predicting a faulty behaviour of an electrical converter. The method includes receiving an operation point indicator of the electrical converter indicative of an actual operation point of the electrical converter, where the electrical converter is connected to a rotating electrical machine; receiving a measured device temperature of a power semiconductor device of the electrical converter indicative of an actual temperature of the power semiconductor device; inputting the operation point indicator as input data into a machine learning algorithm trained with historical data comprising operation point indicators and associated device temperatures, where the historical data was recorded during normal operation of a power semiconductor device; estimating an estimated device temperature with the machine learning algorithm, where the estimated device temperature represents a device temperature during a normal operation; and predicting the faulty behaviour by comparing the estimated device temperature with the measured device temperature.</description><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL</subject><subject>CONTROLLING</subject><subject>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</subject><subject>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</subject><subject>PHYSICS</subject><subject>REGULATING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjEsKwkAQBbNxIeod2gMIxqi4VhSXgrqWTvKSDMwn9HQi3t4oHsDVg6rijRN3EZSmUBM8hYoq7qy-KEfDvQmdfBhTEXwPUQjlHFHS0CpcC2HtBISoxvH34mm0IcdFYzzIgsUbXxPbOshg3DQZVWwjZr-dJPPT8XY4L9CGB2LLBTz0cb-m6W6TLdfb_Sr7p3kDv29C_Q</recordid><startdate>20231226</startdate><enddate>20231226</enddate><creator>Särkimäki, Ville</creator><creator>Siimesjärvi, Joni</creator><creator>Alkkiomáki, Olli</creator><scope>EVB</scope></search><sort><creationdate>20231226</creationdate><title>Prediction of faulty behaviour of a converter based on temperature estimation with machine learning algorithm</title><author>Särkimäki, Ville ; Siimesjärvi, Joni ; Alkkiomáki, Olli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11853046B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CONTROL OR REGULATING SYSTEMS IN GENERAL</topic><topic>CONTROLLING</topic><topic>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</topic><topic>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</topic><topic>PHYSICS</topic><topic>REGULATING</topic><toplevel>online_resources</toplevel><creatorcontrib>Särkimäki, Ville</creatorcontrib><creatorcontrib>Siimesjärvi, Joni</creatorcontrib><creatorcontrib>Alkkiomáki, Olli</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Särkimäki, Ville</au><au>Siimesjärvi, Joni</au><au>Alkkiomáki, Olli</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Prediction of faulty behaviour of a converter based on temperature estimation with machine learning algorithm</title><date>2023-12-26</date><risdate>2023</risdate><abstract>Disclosed herein is a method for predicting a faulty behaviour of an electrical converter. The method includes receiving an operation point indicator of the electrical converter indicative of an actual operation point of the electrical converter, where the electrical converter is connected to a rotating electrical machine; receiving a measured device temperature of a power semiconductor device of the electrical converter indicative of an actual temperature of the power semiconductor device; inputting the operation point indicator as input data into a machine learning algorithm trained with historical data comprising operation point indicators and associated device temperatures, where the historical data was recorded during normal operation of a power semiconductor device; estimating an estimated device temperature with the machine learning algorithm, where the estimated device temperature represents a device temperature during a normal operation; and predicting the faulty behaviour by comparing the estimated device temperature with the measured device temperature.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11853046B2 |
source | esp@cenet |
subjects | CONTROL OR REGULATING SYSTEMS IN GENERAL CONTROLLING FUNCTIONAL ELEMENTS OF SUCH SYSTEMS MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS PHYSICS REGULATING |
title | Prediction of faulty behaviour of a converter based on temperature estimation with machine learning algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A01%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=S%C3%A4rkim%C3%A4ki,%20Ville&rft.date=2023-12-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11853046B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |