Frequency modulation dynamic modeling method and device for wind farm, and electronic device

The present invention provides a frequency modulation dynamic modeling method and device for a wind farm, and an electronic device. The method includes: acquiring first frequency modulation data measured at a grid-connected point of the wind farm under a plurality of preset working conditions; estab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hu, Yang, Yao, Xinran, Song, Ziqiu, Liu, Jizhen, Fang, Fang
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Hu, Yang
Yao, Xinran
Song, Ziqiu
Liu, Jizhen
Fang, Fang
description The present invention provides a frequency modulation dynamic modeling method and device for a wind farm, and an electronic device. The method includes: acquiring first frequency modulation data measured at a grid-connected point of the wind farm under a plurality of preset working conditions; establishing a state space model corresponding to each of the plurality of working conditions according to the first frequency modulation data; measuring the nonlinearity between the state space models corresponding to each two of the plurality of working conditions by using a gap measurement method; combining the first frequency modulation data according to the nonlinearity to obtain second frequency modulation data; and training a preset initial LSTM neural network according to the second frequency modulation data until a preset training requirement is met, and obtaining a trained frequency modulation dynamic model of the wind farm.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11847530B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11847530B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11847530B13</originalsourceid><addsrcrecordid>eNqNi8sKwjAURLNxIeo_XPcKhiq6Vizu1Z1QQjLRQHJT01Tp31sfH-BqmDlnhuJSJtxbsO4oRNN6lV1kMh2r4PR7gnd8pYB8i4YUGzJ4OA2yMdHT9d2qFGYfAg-dU-T--JXGYmCVbzD55UhMy_1pd5ijjhWaWmkwcnU-SrlZrlfFYiuLf5wXtbU7yw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Frequency modulation dynamic modeling method and device for wind farm, and electronic device</title><source>esp@cenet</source><creator>Hu, Yang ; Yao, Xinran ; Song, Ziqiu ; Liu, Jizhen ; Fang, Fang</creator><creatorcontrib>Hu, Yang ; Yao, Xinran ; Song, Ziqiu ; Liu, Jizhen ; Fang, Fang</creatorcontrib><description>The present invention provides a frequency modulation dynamic modeling method and device for a wind farm, and an electronic device. The method includes: acquiring first frequency modulation data measured at a grid-connected point of the wind farm under a plurality of preset working conditions; establishing a state space model corresponding to each of the plurality of working conditions according to the first frequency modulation data; measuring the nonlinearity between the state space models corresponding to each two of the plurality of working conditions by using a gap measurement method; combining the first frequency modulation data according to the nonlinearity to obtain second frequency modulation data; and training a preset initial LSTM neural network according to the second frequency modulation data until a preset training requirement is met, and obtaining a trained frequency modulation dynamic model of the wind farm.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231219&amp;DB=EPODOC&amp;CC=US&amp;NR=11847530B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25566,76549</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231219&amp;DB=EPODOC&amp;CC=US&amp;NR=11847530B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Hu, Yang</creatorcontrib><creatorcontrib>Yao, Xinran</creatorcontrib><creatorcontrib>Song, Ziqiu</creatorcontrib><creatorcontrib>Liu, Jizhen</creatorcontrib><creatorcontrib>Fang, Fang</creatorcontrib><title>Frequency modulation dynamic modeling method and device for wind farm, and electronic device</title><description>The present invention provides a frequency modulation dynamic modeling method and device for a wind farm, and an electronic device. The method includes: acquiring first frequency modulation data measured at a grid-connected point of the wind farm under a plurality of preset working conditions; establishing a state space model corresponding to each of the plurality of working conditions according to the first frequency modulation data; measuring the nonlinearity between the state space models corresponding to each two of the plurality of working conditions by using a gap measurement method; combining the first frequency modulation data according to the nonlinearity to obtain second frequency modulation data; and training a preset initial LSTM neural network according to the second frequency modulation data until a preset training requirement is met, and obtaining a trained frequency modulation dynamic model of the wind farm.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi8sKwjAURLNxIeo_XPcKhiq6Vizu1Z1QQjLRQHJT01Tp31sfH-BqmDlnhuJSJtxbsO4oRNN6lV1kMh2r4PR7gnd8pYB8i4YUGzJ4OA2yMdHT9d2qFGYfAg-dU-T--JXGYmCVbzD55UhMy_1pd5ijjhWaWmkwcnU-SrlZrlfFYiuLf5wXtbU7yw</recordid><startdate>20231219</startdate><enddate>20231219</enddate><creator>Hu, Yang</creator><creator>Yao, Xinran</creator><creator>Song, Ziqiu</creator><creator>Liu, Jizhen</creator><creator>Fang, Fang</creator><scope>EVB</scope></search><sort><creationdate>20231219</creationdate><title>Frequency modulation dynamic modeling method and device for wind farm, and electronic device</title><author>Hu, Yang ; Yao, Xinran ; Song, Ziqiu ; Liu, Jizhen ; Fang, Fang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11847530B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yang</creatorcontrib><creatorcontrib>Yao, Xinran</creatorcontrib><creatorcontrib>Song, Ziqiu</creatorcontrib><creatorcontrib>Liu, Jizhen</creatorcontrib><creatorcontrib>Fang, Fang</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hu, Yang</au><au>Yao, Xinran</au><au>Song, Ziqiu</au><au>Liu, Jizhen</au><au>Fang, Fang</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Frequency modulation dynamic modeling method and device for wind farm, and electronic device</title><date>2023-12-19</date><risdate>2023</risdate><abstract>The present invention provides a frequency modulation dynamic modeling method and device for a wind farm, and an electronic device. The method includes: acquiring first frequency modulation data measured at a grid-connected point of the wind farm under a plurality of preset working conditions; establishing a state space model corresponding to each of the plurality of working conditions according to the first frequency modulation data; measuring the nonlinearity between the state space models corresponding to each two of the plurality of working conditions by using a gap measurement method; combining the first frequency modulation data according to the nonlinearity to obtain second frequency modulation data; and training a preset initial LSTM neural network according to the second frequency modulation data until a preset training requirement is met, and obtaining a trained frequency modulation dynamic model of the wind farm.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11847530B1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Frequency modulation dynamic modeling method and device for wind farm, and electronic device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A35%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Hu,%20Yang&rft.date=2023-12-19&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11847530B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true