Automatically tuning a quality of service setting for a distributed storage system with a deep reinforcement learning agent

Systems and methods are described for using a Deep Reinforcement Learning (DRL) agent to automatically tune Quality of Service (QoS) settings of a distributed storage system (DSS). According to one embodiment, a DRL agent is trained in a simulated environment to select QoS settings (e.g., a value of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Cady, Tyler W
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Cady, Tyler W
description Systems and methods are described for using a Deep Reinforcement Learning (DRL) agent to automatically tune Quality of Service (QoS) settings of a distributed storage system (DSS). According to one embodiment, a DRL agent is trained in a simulated environment to select QoS settings (e.g., a value of one or more of a minimum IOPS parameter, a maximum IOPS parameter, and a burst IOPS parameter). The training may involve placing the DRL agent into every feasible state representing combinations of QoS settings, workload conditions, and system metrics for a period of time for multiple iterations, and rewarding the DRL agent for selecting QoS settings that minimize an objective function based on a selected measure of system load. The trained DRL agent may then be deployed to one or more DSSs to constantly update QoS settings so as to minimize the selected measure of system load.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11842068B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11842068B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11842068B23</originalsourceid><addsrcrecordid>eNqNjUEKwjAQRbtxIeodxgMItop0q6K4V9dlTKdxIE1qMlGKlzdFD-Dq8fnv88fZexvFtSis0JgeJFq2GhAeEQ1LD66BQP7JihJFhrJxPgk1B_F8i0I1BHEedTL6INTCi-U-GEQdeGKbBopasgKG0H8PdIrTbNSgCTT7cZLNj4fL_rSgzlUUOlRkSarrOc_LdbHclLti9Y_zARSSSD4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Automatically tuning a quality of service setting for a distributed storage system with a deep reinforcement learning agent</title><source>esp@cenet</source><creator>Cady, Tyler W</creator><creatorcontrib>Cady, Tyler W</creatorcontrib><description>Systems and methods are described for using a Deep Reinforcement Learning (DRL) agent to automatically tune Quality of Service (QoS) settings of a distributed storage system (DSS). According to one embodiment, a DRL agent is trained in a simulated environment to select QoS settings (e.g., a value of one or more of a minimum IOPS parameter, a maximum IOPS parameter, and a burst IOPS parameter). The training may involve placing the DRL agent into every feasible state representing combinations of QoS settings, workload conditions, and system metrics for a period of time for multiple iterations, and rewarding the DRL agent for selecting QoS settings that minimize an objective function based on a selected measure of system load. The trained DRL agent may then be deployed to one or more DSSs to constantly update QoS settings so as to minimize the selected measure of system load.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231212&amp;DB=EPODOC&amp;CC=US&amp;NR=11842068B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231212&amp;DB=EPODOC&amp;CC=US&amp;NR=11842068B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Cady, Tyler W</creatorcontrib><title>Automatically tuning a quality of service setting for a distributed storage system with a deep reinforcement learning agent</title><description>Systems and methods are described for using a Deep Reinforcement Learning (DRL) agent to automatically tune Quality of Service (QoS) settings of a distributed storage system (DSS). According to one embodiment, a DRL agent is trained in a simulated environment to select QoS settings (e.g., a value of one or more of a minimum IOPS parameter, a maximum IOPS parameter, and a burst IOPS parameter). The training may involve placing the DRL agent into every feasible state representing combinations of QoS settings, workload conditions, and system metrics for a period of time for multiple iterations, and rewarding the DRL agent for selecting QoS settings that minimize an objective function based on a selected measure of system load. The trained DRL agent may then be deployed to one or more DSSs to constantly update QoS settings so as to minimize the selected measure of system load.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjUEKwjAQRbtxIeodxgMItop0q6K4V9dlTKdxIE1qMlGKlzdFD-Dq8fnv88fZexvFtSis0JgeJFq2GhAeEQ1LD66BQP7JihJFhrJxPgk1B_F8i0I1BHEedTL6INTCi-U-GEQdeGKbBopasgKG0H8PdIrTbNSgCTT7cZLNj4fL_rSgzlUUOlRkSarrOc_LdbHclLti9Y_zARSSSD4</recordid><startdate>20231212</startdate><enddate>20231212</enddate><creator>Cady, Tyler W</creator><scope>EVB</scope></search><sort><creationdate>20231212</creationdate><title>Automatically tuning a quality of service setting for a distributed storage system with a deep reinforcement learning agent</title><author>Cady, Tyler W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11842068B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Cady, Tyler W</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cady, Tyler W</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Automatically tuning a quality of service setting for a distributed storage system with a deep reinforcement learning agent</title><date>2023-12-12</date><risdate>2023</risdate><abstract>Systems and methods are described for using a Deep Reinforcement Learning (DRL) agent to automatically tune Quality of Service (QoS) settings of a distributed storage system (DSS). According to one embodiment, a DRL agent is trained in a simulated environment to select QoS settings (e.g., a value of one or more of a minimum IOPS parameter, a maximum IOPS parameter, and a burst IOPS parameter). The training may involve placing the DRL agent into every feasible state representing combinations of QoS settings, workload conditions, and system metrics for a period of time for multiple iterations, and rewarding the DRL agent for selecting QoS settings that minimize an objective function based on a selected measure of system load. The trained DRL agent may then be deployed to one or more DSSs to constantly update QoS settings so as to minimize the selected measure of system load.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11842068B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Automatically tuning a quality of service setting for a distributed storage system with a deep reinforcement learning agent
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A45%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Cady,%20Tyler%20W&rft.date=2023-12-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11842068B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true