Intelligent mass air flow (MAF) prediction system with neural network
The Method and Apparatus of Predicting MAF Sensor Information includes training multiple candidate Artificial Neural Network (ANN) architectures using training data, and then selecting an ANN architecture from the candidates using an automated ANN architecture selection algorithm and testing data. A...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Rahul Rajampeta, Rahul Rajampeta Minaz, Askin Vemuri, Manoj Rayala, Ravi Park, Jungme Raguraman, Sriram Jayachandran |
description | The Method and Apparatus of Predicting MAF Sensor Information includes training multiple candidate Artificial Neural Network (ANN) architectures using training data, and then selecting an ANN architecture from the candidates using an automated ANN architecture selection algorithm and testing data. An intelligent engine intake MAF prediction or estimation system using the selected ANN architecture then provides an engine intake Mass Air Flow (MAF) output variable, which is used along with the output of a hot-wire type engine intake MAF sensor. The system is deployed into the engine controller. The training and testing sets of data include input variables from engine sensors and/or actuators that relate to engine intake MAF, and may be acquired by testing a target engine. Selecting the optimal ANN architecture may be based on Root Mean Squared Error (RMSE) analysis using the automated ANN architecture algorithm and the training set of data. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11840974B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11840974B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11840974B23</originalsourceid><addsrcrecordid>eNrjZHD1zCtJzcnJTE_NK1HITSwuVkjMLFJIy8kvV9DwdXTTVCgoSk3JTC7JzM9TKK4sLknNVSjPLMlQyEstLUrMAVIl5flF2TwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5FagyPjTY0NDCxMDS3MTJyJgYNQC0rjLz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Intelligent mass air flow (MAF) prediction system with neural network</title><source>esp@cenet</source><creator>Rahul Rajampeta, Rahul Rajampeta ; Minaz, Askin ; Vemuri, Manoj ; Rayala, Ravi ; Park, Jungme ; Raguraman, Sriram Jayachandran</creator><creatorcontrib>Rahul Rajampeta, Rahul Rajampeta ; Minaz, Askin ; Vemuri, Manoj ; Rayala, Ravi ; Park, Jungme ; Raguraman, Sriram Jayachandran</creatorcontrib><description>The Method and Apparatus of Predicting MAF Sensor Information includes training multiple candidate Artificial Neural Network (ANN) architectures using training data, and then selecting an ANN architecture from the candidates using an automated ANN architecture selection algorithm and testing data. An intelligent engine intake MAF prediction or estimation system using the selected ANN architecture then provides an engine intake Mass Air Flow (MAF) output variable, which is used along with the output of a hot-wire type engine intake MAF sensor. The system is deployed into the engine controller. The training and testing sets of data include input variables from engine sensors and/or actuators that relate to engine intake MAF, and may be acquired by testing a target engine. Selecting the optimal ANN architecture may be based on Root Mean Squared Error (RMSE) analysis using the automated ANN architecture algorithm and the training set of data.</description><language>eng</language><subject>BLASTING ; CALCULATING ; COMBUSTION ENGINES ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONTROLLING COMBUSTION ENGINES ; COUNTING ; HEATING ; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS ; LIGHTING ; MECHANICAL ENGINEERING ; PHYSICS ; WEAPONS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231212&DB=EPODOC&CC=US&NR=11840974B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231212&DB=EPODOC&CC=US&NR=11840974B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Rahul Rajampeta, Rahul Rajampeta</creatorcontrib><creatorcontrib>Minaz, Askin</creatorcontrib><creatorcontrib>Vemuri, Manoj</creatorcontrib><creatorcontrib>Rayala, Ravi</creatorcontrib><creatorcontrib>Park, Jungme</creatorcontrib><creatorcontrib>Raguraman, Sriram Jayachandran</creatorcontrib><title>Intelligent mass air flow (MAF) prediction system with neural network</title><description>The Method and Apparatus of Predicting MAF Sensor Information includes training multiple candidate Artificial Neural Network (ANN) architectures using training data, and then selecting an ANN architecture from the candidates using an automated ANN architecture selection algorithm and testing data. An intelligent engine intake MAF prediction or estimation system using the selected ANN architecture then provides an engine intake Mass Air Flow (MAF) output variable, which is used along with the output of a hot-wire type engine intake MAF sensor. The system is deployed into the engine controller. The training and testing sets of data include input variables from engine sensors and/or actuators that relate to engine intake MAF, and may be acquired by testing a target engine. Selecting the optimal ANN architecture may be based on Root Mean Squared Error (RMSE) analysis using the automated ANN architecture algorithm and the training set of data.</description><subject>BLASTING</subject><subject>CALCULATING</subject><subject>COMBUSTION ENGINES</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONTROLLING COMBUSTION ENGINES</subject><subject>COUNTING</subject><subject>HEATING</subject><subject>HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS</subject><subject>LIGHTING</subject><subject>MECHANICAL ENGINEERING</subject><subject>PHYSICS</subject><subject>WEAPONS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHD1zCtJzcnJTE_NK1HITSwuVkjMLFJIy8kvV9DwdXTTVCgoSk3JTC7JzM9TKK4sLknNVSjPLMlQyEstLUrMAVIl5flF2TwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5FagyPjTY0NDCxMDS3MTJyJgYNQC0rjLz</recordid><startdate>20231212</startdate><enddate>20231212</enddate><creator>Rahul Rajampeta, Rahul Rajampeta</creator><creator>Minaz, Askin</creator><creator>Vemuri, Manoj</creator><creator>Rayala, Ravi</creator><creator>Park, Jungme</creator><creator>Raguraman, Sriram Jayachandran</creator><scope>EVB</scope></search><sort><creationdate>20231212</creationdate><title>Intelligent mass air flow (MAF) prediction system with neural network</title><author>Rahul Rajampeta, Rahul Rajampeta ; Minaz, Askin ; Vemuri, Manoj ; Rayala, Ravi ; Park, Jungme ; Raguraman, Sriram Jayachandran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11840974B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>BLASTING</topic><topic>CALCULATING</topic><topic>COMBUSTION ENGINES</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONTROLLING COMBUSTION ENGINES</topic><topic>COUNTING</topic><topic>HEATING</topic><topic>HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS</topic><topic>LIGHTING</topic><topic>MECHANICAL ENGINEERING</topic><topic>PHYSICS</topic><topic>WEAPONS</topic><toplevel>online_resources</toplevel><creatorcontrib>Rahul Rajampeta, Rahul Rajampeta</creatorcontrib><creatorcontrib>Minaz, Askin</creatorcontrib><creatorcontrib>Vemuri, Manoj</creatorcontrib><creatorcontrib>Rayala, Ravi</creatorcontrib><creatorcontrib>Park, Jungme</creatorcontrib><creatorcontrib>Raguraman, Sriram Jayachandran</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rahul Rajampeta, Rahul Rajampeta</au><au>Minaz, Askin</au><au>Vemuri, Manoj</au><au>Rayala, Ravi</au><au>Park, Jungme</au><au>Raguraman, Sriram Jayachandran</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Intelligent mass air flow (MAF) prediction system with neural network</title><date>2023-12-12</date><risdate>2023</risdate><abstract>The Method and Apparatus of Predicting MAF Sensor Information includes training multiple candidate Artificial Neural Network (ANN) architectures using training data, and then selecting an ANN architecture from the candidates using an automated ANN architecture selection algorithm and testing data. An intelligent engine intake MAF prediction or estimation system using the selected ANN architecture then provides an engine intake Mass Air Flow (MAF) output variable, which is used along with the output of a hot-wire type engine intake MAF sensor. The system is deployed into the engine controller. The training and testing sets of data include input variables from engine sensors and/or actuators that relate to engine intake MAF, and may be acquired by testing a target engine. Selecting the optimal ANN architecture may be based on Root Mean Squared Error (RMSE) analysis using the automated ANN architecture algorithm and the training set of data.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11840974B2 |
source | esp@cenet |
subjects | BLASTING CALCULATING COMBUSTION ENGINES COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING CONTROLLING COMBUSTION ENGINES COUNTING HEATING HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS LIGHTING MECHANICAL ENGINEERING PHYSICS WEAPONS |
title | Intelligent mass air flow (MAF) prediction system with neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A10%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Rahul%20Rajampeta,%20Rahul%20Rajampeta&rft.date=2023-12-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11840974B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |