Intelligent mass air flow (MAF) prediction system with neural network

The Method and Apparatus of Predicting MAF Sensor Information includes training multiple candidate Artificial Neural Network (ANN) architectures using training data, and then selecting an ANN architecture from the candidates using an automated ANN architecture selection algorithm and testing data. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rahul Rajampeta, Rahul Rajampeta, Minaz, Askin, Vemuri, Manoj, Rayala, Ravi, Park, Jungme, Raguraman, Sriram Jayachandran
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Rahul Rajampeta, Rahul Rajampeta
Minaz, Askin
Vemuri, Manoj
Rayala, Ravi
Park, Jungme
Raguraman, Sriram Jayachandran
description The Method and Apparatus of Predicting MAF Sensor Information includes training multiple candidate Artificial Neural Network (ANN) architectures using training data, and then selecting an ANN architecture from the candidates using an automated ANN architecture selection algorithm and testing data. An intelligent engine intake MAF prediction or estimation system using the selected ANN architecture then provides an engine intake Mass Air Flow (MAF) output variable, which is used along with the output of a hot-wire type engine intake MAF sensor. The system is deployed into the engine controller. The training and testing sets of data include input variables from engine sensors and/or actuators that relate to engine intake MAF, and may be acquired by testing a target engine. Selecting the optimal ANN architecture may be based on Root Mean Squared Error (RMSE) analysis using the automated ANN architecture algorithm and the training set of data.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11840974B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11840974B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11840974B23</originalsourceid><addsrcrecordid>eNrjZHD1zCtJzcnJTE_NK1HITSwuVkjMLFJIy8kvV9DwdXTTVCgoSk3JTC7JzM9TKK4sLknNVSjPLMlQyEstLUrMAVIl5flF2TwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5FagyPjTY0NDCxMDS3MTJyJgYNQC0rjLz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Intelligent mass air flow (MAF) prediction system with neural network</title><source>esp@cenet</source><creator>Rahul Rajampeta, Rahul Rajampeta ; Minaz, Askin ; Vemuri, Manoj ; Rayala, Ravi ; Park, Jungme ; Raguraman, Sriram Jayachandran</creator><creatorcontrib>Rahul Rajampeta, Rahul Rajampeta ; Minaz, Askin ; Vemuri, Manoj ; Rayala, Ravi ; Park, Jungme ; Raguraman, Sriram Jayachandran</creatorcontrib><description>The Method and Apparatus of Predicting MAF Sensor Information includes training multiple candidate Artificial Neural Network (ANN) architectures using training data, and then selecting an ANN architecture from the candidates using an automated ANN architecture selection algorithm and testing data. An intelligent engine intake MAF prediction or estimation system using the selected ANN architecture then provides an engine intake Mass Air Flow (MAF) output variable, which is used along with the output of a hot-wire type engine intake MAF sensor. The system is deployed into the engine controller. The training and testing sets of data include input variables from engine sensors and/or actuators that relate to engine intake MAF, and may be acquired by testing a target engine. Selecting the optimal ANN architecture may be based on Root Mean Squared Error (RMSE) analysis using the automated ANN architecture algorithm and the training set of data.</description><language>eng</language><subject>BLASTING ; CALCULATING ; COMBUSTION ENGINES ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONTROLLING COMBUSTION ENGINES ; COUNTING ; HEATING ; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS ; LIGHTING ; MECHANICAL ENGINEERING ; PHYSICS ; WEAPONS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231212&amp;DB=EPODOC&amp;CC=US&amp;NR=11840974B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231212&amp;DB=EPODOC&amp;CC=US&amp;NR=11840974B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Rahul Rajampeta, Rahul Rajampeta</creatorcontrib><creatorcontrib>Minaz, Askin</creatorcontrib><creatorcontrib>Vemuri, Manoj</creatorcontrib><creatorcontrib>Rayala, Ravi</creatorcontrib><creatorcontrib>Park, Jungme</creatorcontrib><creatorcontrib>Raguraman, Sriram Jayachandran</creatorcontrib><title>Intelligent mass air flow (MAF) prediction system with neural network</title><description>The Method and Apparatus of Predicting MAF Sensor Information includes training multiple candidate Artificial Neural Network (ANN) architectures using training data, and then selecting an ANN architecture from the candidates using an automated ANN architecture selection algorithm and testing data. An intelligent engine intake MAF prediction or estimation system using the selected ANN architecture then provides an engine intake Mass Air Flow (MAF) output variable, which is used along with the output of a hot-wire type engine intake MAF sensor. The system is deployed into the engine controller. The training and testing sets of data include input variables from engine sensors and/or actuators that relate to engine intake MAF, and may be acquired by testing a target engine. Selecting the optimal ANN architecture may be based on Root Mean Squared Error (RMSE) analysis using the automated ANN architecture algorithm and the training set of data.</description><subject>BLASTING</subject><subject>CALCULATING</subject><subject>COMBUSTION ENGINES</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONTROLLING COMBUSTION ENGINES</subject><subject>COUNTING</subject><subject>HEATING</subject><subject>HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS</subject><subject>LIGHTING</subject><subject>MECHANICAL ENGINEERING</subject><subject>PHYSICS</subject><subject>WEAPONS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHD1zCtJzcnJTE_NK1HITSwuVkjMLFJIy8kvV9DwdXTTVCgoSk3JTC7JzM9TKK4sLknNVSjPLMlQyEstLUrMAVIl5flF2TwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5FagyPjTY0NDCxMDS3MTJyJgYNQC0rjLz</recordid><startdate>20231212</startdate><enddate>20231212</enddate><creator>Rahul Rajampeta, Rahul Rajampeta</creator><creator>Minaz, Askin</creator><creator>Vemuri, Manoj</creator><creator>Rayala, Ravi</creator><creator>Park, Jungme</creator><creator>Raguraman, Sriram Jayachandran</creator><scope>EVB</scope></search><sort><creationdate>20231212</creationdate><title>Intelligent mass air flow (MAF) prediction system with neural network</title><author>Rahul Rajampeta, Rahul Rajampeta ; Minaz, Askin ; Vemuri, Manoj ; Rayala, Ravi ; Park, Jungme ; Raguraman, Sriram Jayachandran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11840974B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>BLASTING</topic><topic>CALCULATING</topic><topic>COMBUSTION ENGINES</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONTROLLING COMBUSTION ENGINES</topic><topic>COUNTING</topic><topic>HEATING</topic><topic>HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS</topic><topic>LIGHTING</topic><topic>MECHANICAL ENGINEERING</topic><topic>PHYSICS</topic><topic>WEAPONS</topic><toplevel>online_resources</toplevel><creatorcontrib>Rahul Rajampeta, Rahul Rajampeta</creatorcontrib><creatorcontrib>Minaz, Askin</creatorcontrib><creatorcontrib>Vemuri, Manoj</creatorcontrib><creatorcontrib>Rayala, Ravi</creatorcontrib><creatorcontrib>Park, Jungme</creatorcontrib><creatorcontrib>Raguraman, Sriram Jayachandran</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rahul Rajampeta, Rahul Rajampeta</au><au>Minaz, Askin</au><au>Vemuri, Manoj</au><au>Rayala, Ravi</au><au>Park, Jungme</au><au>Raguraman, Sriram Jayachandran</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Intelligent mass air flow (MAF) prediction system with neural network</title><date>2023-12-12</date><risdate>2023</risdate><abstract>The Method and Apparatus of Predicting MAF Sensor Information includes training multiple candidate Artificial Neural Network (ANN) architectures using training data, and then selecting an ANN architecture from the candidates using an automated ANN architecture selection algorithm and testing data. An intelligent engine intake MAF prediction or estimation system using the selected ANN architecture then provides an engine intake Mass Air Flow (MAF) output variable, which is used along with the output of a hot-wire type engine intake MAF sensor. The system is deployed into the engine controller. The training and testing sets of data include input variables from engine sensors and/or actuators that relate to engine intake MAF, and may be acquired by testing a target engine. Selecting the optimal ANN architecture may be based on Root Mean Squared Error (RMSE) analysis using the automated ANN architecture algorithm and the training set of data.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11840974B2
source esp@cenet
subjects BLASTING
CALCULATING
COMBUSTION ENGINES
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
CONTROLLING COMBUSTION ENGINES
COUNTING
HEATING
HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
LIGHTING
MECHANICAL ENGINEERING
PHYSICS
WEAPONS
title Intelligent mass air flow (MAF) prediction system with neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A10%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Rahul%20Rajampeta,%20Rahul%20Rajampeta&rft.date=2023-12-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11840974B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true