Explainable process prediction

A method and system are provided in which predictions are generated, using one or more machine learning-based prediction models, for one or more process parameters associated with a running process. Explanation-oriented data elements are generated that correspond to the generated predictions and inc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Scheepens, Roeland Johannus, Verhoef, Celine
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Scheepens, Roeland Johannus
Verhoef, Celine
description A method and system are provided in which predictions are generated, using one or more machine learning-based prediction models, for one or more process parameters associated with a running process. Explanation-oriented data elements are generated that correspond to the generated predictions and include confidence indicators associated with the generated predictions. The explanation-oriented data elements are presented in one or more dashboards of a visualization platform. The explanation-oriented data elements are representative of an explanation framework for explaining the predicted business process parameters generated by a machine learning-based prediction model and in a manner so that a user can understand and trust the basis for the predictions to facilitate effective and appropriate intervention in a running process.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11836665B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11836665B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11836665B23</originalsourceid><addsrcrecordid>eNrjZJBzrSjISczMS0zKSVUoKMpPTi0uBtKpKZnJJZn5eTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JD402NDQwtjMzMzUyciYGDUAI5ElFg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Explainable process prediction</title><source>esp@cenet</source><creator>Scheepens, Roeland Johannus ; Verhoef, Celine</creator><creatorcontrib>Scheepens, Roeland Johannus ; Verhoef, Celine</creatorcontrib><description>A method and system are provided in which predictions are generated, using one or more machine learning-based prediction models, for one or more process parameters associated with a running process. Explanation-oriented data elements are generated that correspond to the generated predictions and include confidence indicators associated with the generated predictions. The explanation-oriented data elements are presented in one or more dashboards of a visualization platform. The explanation-oriented data elements are representative of an explanation framework for explaining the predicted business process parameters generated by a machine learning-based prediction model and in a manner so that a user can understand and trust the basis for the predictions to facilitate effective and appropriate intervention in a running process.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231205&amp;DB=EPODOC&amp;CC=US&amp;NR=11836665B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231205&amp;DB=EPODOC&amp;CC=US&amp;NR=11836665B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Scheepens, Roeland Johannus</creatorcontrib><creatorcontrib>Verhoef, Celine</creatorcontrib><title>Explainable process prediction</title><description>A method and system are provided in which predictions are generated, using one or more machine learning-based prediction models, for one or more process parameters associated with a running process. Explanation-oriented data elements are generated that correspond to the generated predictions and include confidence indicators associated with the generated predictions. The explanation-oriented data elements are presented in one or more dashboards of a visualization platform. The explanation-oriented data elements are representative of an explanation framework for explaining the predicted business process parameters generated by a machine learning-based prediction model and in a manner so that a user can understand and trust the basis for the predictions to facilitate effective and appropriate intervention in a running process.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZJBzrSjISczMS0zKSVUoKMpPTi0uBtKpKZnJJZn5eTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JD402NDQwtjMzMzUyciYGDUAI5ElFg</recordid><startdate>20231205</startdate><enddate>20231205</enddate><creator>Scheepens, Roeland Johannus</creator><creator>Verhoef, Celine</creator><scope>EVB</scope></search><sort><creationdate>20231205</creationdate><title>Explainable process prediction</title><author>Scheepens, Roeland Johannus ; Verhoef, Celine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11836665B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Scheepens, Roeland Johannus</creatorcontrib><creatorcontrib>Verhoef, Celine</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Scheepens, Roeland Johannus</au><au>Verhoef, Celine</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Explainable process prediction</title><date>2023-12-05</date><risdate>2023</risdate><abstract>A method and system are provided in which predictions are generated, using one or more machine learning-based prediction models, for one or more process parameters associated with a running process. Explanation-oriented data elements are generated that correspond to the generated predictions and include confidence indicators associated with the generated predictions. The explanation-oriented data elements are presented in one or more dashboards of a visualization platform. The explanation-oriented data elements are representative of an explanation framework for explaining the predicted business process parameters generated by a machine learning-based prediction model and in a manner so that a user can understand and trust the basis for the predictions to facilitate effective and appropriate intervention in a running process.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11836665B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Explainable process prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A23%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Scheepens,%20Roeland%20Johannus&rft.date=2023-12-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11836665B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true