Passive spychip detection through time series monitoring of induced magnetic field and electromagnetic interference
Embodiments for passive spychip detection through polarizability and advanced pattern recognition are described. For example a method includes inducing a magnetic field in a passive component of a target system while the target system is emitting EMI with changes in amplitude repeating at a time int...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Wang, Guang C Wu, Yifan Rohrkemper, James Gross, Kenny C |
description | Embodiments for passive spychip detection through polarizability and advanced pattern recognition are described. For example a method includes inducing a magnetic field in a passive component of a target system while the target system is emitting EMI with changes in amplitude repeating at a time interval; generating a time series of measurements of a combined magnetic field strength of the induced magnetic field and the EMI; executing a frequency-domain to time-domain transformation on the time series of measurements to create time series signals of combined magnetic field strength over time at a specific frequency range; monitoring the time series signals with an ML model trained to predict correct signal values to determine whether predicted and measured values of the time series agree; and indicating that the target device may contain a passive spychip where anomalies are detected, and is free of passive spychips where no anomalies are detected. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11822036B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11822036B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11822036B23</originalsourceid><addsrcrecordid>eNqNjLEKwjAURbs4iPoPzw8QbAviXFEcBXUuIblpH7TvhSQV_Hs7iLPTGc65d1mkm0mJX6AU3rbnQA4ZNrMK5T7q1PWUeZw1IiPRqMJZI0tH6onFTRaORtMJMlvyjMGREUcY5peoP8OSET0ixGJdLLwZEjZfrort5fw4XXcI2iIFYzGP2ue9LI9Vta8PTVX_03wA0SJFlw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Passive spychip detection through time series monitoring of induced magnetic field and electromagnetic interference</title><source>esp@cenet</source><creator>Wang, Guang C ; Wu, Yifan ; Rohrkemper, James ; Gross, Kenny C</creator><creatorcontrib>Wang, Guang C ; Wu, Yifan ; Rohrkemper, James ; Gross, Kenny C</creatorcontrib><description>Embodiments for passive spychip detection through polarizability and advanced pattern recognition are described. For example a method includes inducing a magnetic field in a passive component of a target system while the target system is emitting EMI with changes in amplitude repeating at a time interval; generating a time series of measurements of a combined magnetic field strength of the induced magnetic field and the EMI; executing a frequency-domain to time-domain transformation on the time series of measurements to create time series signals of combined magnetic field strength over time at a specific frequency range; monitoring the time series signals with an ML model trained to predict correct signal values to determine whether predicted and measured values of the time series agree; and indicating that the target device may contain a passive spychip where anomalies are detected, and is free of passive spychips where no anomalies are detected.</description><language>eng</language><subject>DETECTING MASSES OR OBJECTS ; GEOPHYSICS ; GRAVITATIONAL MEASUREMENTS ; MEASURING ; PHYSICS ; TESTING</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231121&DB=EPODOC&CC=US&NR=11822036B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231121&DB=EPODOC&CC=US&NR=11822036B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Wang, Guang C</creatorcontrib><creatorcontrib>Wu, Yifan</creatorcontrib><creatorcontrib>Rohrkemper, James</creatorcontrib><creatorcontrib>Gross, Kenny C</creatorcontrib><title>Passive spychip detection through time series monitoring of induced magnetic field and electromagnetic interference</title><description>Embodiments for passive spychip detection through polarizability and advanced pattern recognition are described. For example a method includes inducing a magnetic field in a passive component of a target system while the target system is emitting EMI with changes in amplitude repeating at a time interval; generating a time series of measurements of a combined magnetic field strength of the induced magnetic field and the EMI; executing a frequency-domain to time-domain transformation on the time series of measurements to create time series signals of combined magnetic field strength over time at a specific frequency range; monitoring the time series signals with an ML model trained to predict correct signal values to determine whether predicted and measured values of the time series agree; and indicating that the target device may contain a passive spychip where anomalies are detected, and is free of passive spychips where no anomalies are detected.</description><subject>DETECTING MASSES OR OBJECTS</subject><subject>GEOPHYSICS</subject><subject>GRAVITATIONAL MEASUREMENTS</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjLEKwjAURbs4iPoPzw8QbAviXFEcBXUuIblpH7TvhSQV_Hs7iLPTGc65d1mkm0mJX6AU3rbnQA4ZNrMK5T7q1PWUeZw1IiPRqMJZI0tH6onFTRaORtMJMlvyjMGREUcY5peoP8OSET0ixGJdLLwZEjZfrort5fw4XXcI2iIFYzGP2ue9LI9Vta8PTVX_03wA0SJFlw</recordid><startdate>20231121</startdate><enddate>20231121</enddate><creator>Wang, Guang C</creator><creator>Wu, Yifan</creator><creator>Rohrkemper, James</creator><creator>Gross, Kenny C</creator><scope>EVB</scope></search><sort><creationdate>20231121</creationdate><title>Passive spychip detection through time series monitoring of induced magnetic field and electromagnetic interference</title><author>Wang, Guang C ; Wu, Yifan ; Rohrkemper, James ; Gross, Kenny C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11822036B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>DETECTING MASSES OR OBJECTS</topic><topic>GEOPHYSICS</topic><topic>GRAVITATIONAL MEASUREMENTS</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Guang C</creatorcontrib><creatorcontrib>Wu, Yifan</creatorcontrib><creatorcontrib>Rohrkemper, James</creatorcontrib><creatorcontrib>Gross, Kenny C</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Guang C</au><au>Wu, Yifan</au><au>Rohrkemper, James</au><au>Gross, Kenny C</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Passive spychip detection through time series monitoring of induced magnetic field and electromagnetic interference</title><date>2023-11-21</date><risdate>2023</risdate><abstract>Embodiments for passive spychip detection through polarizability and advanced pattern recognition are described. For example a method includes inducing a magnetic field in a passive component of a target system while the target system is emitting EMI with changes in amplitude repeating at a time interval; generating a time series of measurements of a combined magnetic field strength of the induced magnetic field and the EMI; executing a frequency-domain to time-domain transformation on the time series of measurements to create time series signals of combined magnetic field strength over time at a specific frequency range; monitoring the time series signals with an ML model trained to predict correct signal values to determine whether predicted and measured values of the time series agree; and indicating that the target device may contain a passive spychip where anomalies are detected, and is free of passive spychips where no anomalies are detected.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11822036B2 |
source | esp@cenet |
subjects | DETECTING MASSES OR OBJECTS GEOPHYSICS GRAVITATIONAL MEASUREMENTS MEASURING PHYSICS TESTING |
title | Passive spychip detection through time series monitoring of induced magnetic field and electromagnetic interference |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A01%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Wang,%20Guang%20C&rft.date=2023-11-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11822036B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |