Multi-agent trajectory prediction
Methods and systems for training a trajectory prediction model and performing a vehicle maneuver include encoding a set of training data to generate encoded training vectors, where the training data includes trajectory information for agents over time. Trajectory scenarios are simulated based on the...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Liu, Buyu Moslemi, Ramin Chandraker, Manmohan Pittaluga, Francesco Narayanan, Sriram Nochur |
description | Methods and systems for training a trajectory prediction model and performing a vehicle maneuver include encoding a set of training data to generate encoded training vectors, where the training data includes trajectory information for agents over time. Trajectory scenarios are simulated based on the encoded training vectors, with each simulated trajectory scenario representing one or more agents with respective agent trajectories, to generate simulated training data. A predictive neural network model is trained using the simulated training data to generate predicted trajectory scenarios based on a detected scene. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11816901B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11816901B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11816901B23</originalsourceid><addsrcrecordid>eNrjZFD0Lc0pydRNTE_NK1EoKUrMSk0uyS-qVCgoSk3JTC7JzM_jYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGhhaGZpYGhk5GxsSoAQCtuyYx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multi-agent trajectory prediction</title><source>esp@cenet</source><creator>Liu, Buyu ; Moslemi, Ramin ; Chandraker, Manmohan ; Pittaluga, Francesco ; Narayanan, Sriram Nochur</creator><creatorcontrib>Liu, Buyu ; Moslemi, Ramin ; Chandraker, Manmohan ; Pittaluga, Francesco ; Narayanan, Sriram Nochur</creatorcontrib><description>Methods and systems for training a trajectory prediction model and performing a vehicle maneuver include encoding a set of training data to generate encoded training vectors, where the training data includes trajectory information for agents over time. Trajectory scenarios are simulated based on the encoded training vectors, with each simulated trajectory scenario representing one or more agents with respective agent trajectories, to generate simulated training data. A predictive neural network model is trained using the simulated training data to generate predicted trajectory scenarios based on a detected scene.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE ORDIFFERENT FUNCTION ; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PERFORMING OPERATIONS ; PHYSICS ; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TOTHE CONTROL OF A PARTICULAR SUB-UNIT ; TRANSPORTING ; VEHICLES IN GENERAL</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231114&DB=EPODOC&CC=US&NR=11816901B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25555,76308</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231114&DB=EPODOC&CC=US&NR=11816901B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Liu, Buyu</creatorcontrib><creatorcontrib>Moslemi, Ramin</creatorcontrib><creatorcontrib>Chandraker, Manmohan</creatorcontrib><creatorcontrib>Pittaluga, Francesco</creatorcontrib><creatorcontrib>Narayanan, Sriram Nochur</creatorcontrib><title>Multi-agent trajectory prediction</title><description>Methods and systems for training a trajectory prediction model and performing a vehicle maneuver include encoding a set of training data to generate encoded training vectors, where the training data includes trajectory information for agents over time. Trajectory scenarios are simulated based on the encoded training vectors, with each simulated trajectory scenario representing one or more agents with respective agent trajectories, to generate simulated training data. A predictive neural network model is trained using the simulated training data to generate predicted trajectory scenarios based on a detected scene.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE ORDIFFERENT FUNCTION</subject><subject>CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PERFORMING OPERATIONS</subject><subject>PHYSICS</subject><subject>ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TOTHE CONTROL OF A PARTICULAR SUB-UNIT</subject><subject>TRANSPORTING</subject><subject>VEHICLES IN GENERAL</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFD0Lc0pydRNTE_NK1EoKUrMSk0uyS-qVCgoSk3JTC7JzM_jYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGhhaGZpYGhk5GxsSoAQCtuyYx</recordid><startdate>20231114</startdate><enddate>20231114</enddate><creator>Liu, Buyu</creator><creator>Moslemi, Ramin</creator><creator>Chandraker, Manmohan</creator><creator>Pittaluga, Francesco</creator><creator>Narayanan, Sriram Nochur</creator><scope>EVB</scope></search><sort><creationdate>20231114</creationdate><title>Multi-agent trajectory prediction</title><author>Liu, Buyu ; Moslemi, Ramin ; Chandraker, Manmohan ; Pittaluga, Francesco ; Narayanan, Sriram Nochur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11816901B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE ORDIFFERENT FUNCTION</topic><topic>CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PERFORMING OPERATIONS</topic><topic>PHYSICS</topic><topic>ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TOTHE CONTROL OF A PARTICULAR SUB-UNIT</topic><topic>TRANSPORTING</topic><topic>VEHICLES IN GENERAL</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Buyu</creatorcontrib><creatorcontrib>Moslemi, Ramin</creatorcontrib><creatorcontrib>Chandraker, Manmohan</creatorcontrib><creatorcontrib>Pittaluga, Francesco</creatorcontrib><creatorcontrib>Narayanan, Sriram Nochur</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Buyu</au><au>Moslemi, Ramin</au><au>Chandraker, Manmohan</au><au>Pittaluga, Francesco</au><au>Narayanan, Sriram Nochur</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multi-agent trajectory prediction</title><date>2023-11-14</date><risdate>2023</risdate><abstract>Methods and systems for training a trajectory prediction model and performing a vehicle maneuver include encoding a set of training data to generate encoded training vectors, where the training data includes trajectory information for agents over time. Trajectory scenarios are simulated based on the encoded training vectors, with each simulated trajectory scenario representing one or more agents with respective agent trajectories, to generate simulated training data. A predictive neural network model is trained using the simulated training data to generate predicted trajectory scenarios based on a detected scene.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11816901B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE ORDIFFERENT FUNCTION CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES COUNTING ELECTRIC DIGITAL DATA PROCESSING PERFORMING OPERATIONS PHYSICS ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TOTHE CONTROL OF A PARTICULAR SUB-UNIT TRANSPORTING VEHICLES IN GENERAL |
title | Multi-agent trajectory prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A31%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Liu,%20Buyu&rft.date=2023-11-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11816901B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |