Multi-agent trajectory prediction

Methods and systems for training a trajectory prediction model and performing a vehicle maneuver include encoding a set of training data to generate encoded training vectors, where the training data includes trajectory information for agents over time. Trajectory scenarios are simulated based on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Liu, Buyu, Moslemi, Ramin, Chandraker, Manmohan, Pittaluga, Francesco, Narayanan, Sriram Nochur
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Liu, Buyu
Moslemi, Ramin
Chandraker, Manmohan
Pittaluga, Francesco
Narayanan, Sriram Nochur
description Methods and systems for training a trajectory prediction model and performing a vehicle maneuver include encoding a set of training data to generate encoded training vectors, where the training data includes trajectory information for agents over time. Trajectory scenarios are simulated based on the encoded training vectors, with each simulated trajectory scenario representing one or more agents with respective agent trajectories, to generate simulated training data. A predictive neural network model is trained using the simulated training data to generate predicted trajectory scenarios based on a detected scene.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11816901B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11816901B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11816901B23</originalsourceid><addsrcrecordid>eNrjZFD0Lc0pydRNTE_NK1EoKUrMSk0uyS-qVCgoSk3JTC7JzM_jYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGhhaGZpYGhk5GxsSoAQCtuyYx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multi-agent trajectory prediction</title><source>esp@cenet</source><creator>Liu, Buyu ; Moslemi, Ramin ; Chandraker, Manmohan ; Pittaluga, Francesco ; Narayanan, Sriram Nochur</creator><creatorcontrib>Liu, Buyu ; Moslemi, Ramin ; Chandraker, Manmohan ; Pittaluga, Francesco ; Narayanan, Sriram Nochur</creatorcontrib><description>Methods and systems for training a trajectory prediction model and performing a vehicle maneuver include encoding a set of training data to generate encoded training vectors, where the training data includes trajectory information for agents over time. Trajectory scenarios are simulated based on the encoded training vectors, with each simulated trajectory scenario representing one or more agents with respective agent trajectories, to generate simulated training data. A predictive neural network model is trained using the simulated training data to generate predicted trajectory scenarios based on a detected scene.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE ORDIFFERENT FUNCTION ; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PERFORMING OPERATIONS ; PHYSICS ; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TOTHE CONTROL OF A PARTICULAR SUB-UNIT ; TRANSPORTING ; VEHICLES IN GENERAL</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231114&amp;DB=EPODOC&amp;CC=US&amp;NR=11816901B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25555,76308</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231114&amp;DB=EPODOC&amp;CC=US&amp;NR=11816901B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Liu, Buyu</creatorcontrib><creatorcontrib>Moslemi, Ramin</creatorcontrib><creatorcontrib>Chandraker, Manmohan</creatorcontrib><creatorcontrib>Pittaluga, Francesco</creatorcontrib><creatorcontrib>Narayanan, Sriram Nochur</creatorcontrib><title>Multi-agent trajectory prediction</title><description>Methods and systems for training a trajectory prediction model and performing a vehicle maneuver include encoding a set of training data to generate encoded training vectors, where the training data includes trajectory information for agents over time. Trajectory scenarios are simulated based on the encoded training vectors, with each simulated trajectory scenario representing one or more agents with respective agent trajectories, to generate simulated training data. A predictive neural network model is trained using the simulated training data to generate predicted trajectory scenarios based on a detected scene.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE ORDIFFERENT FUNCTION</subject><subject>CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PERFORMING OPERATIONS</subject><subject>PHYSICS</subject><subject>ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TOTHE CONTROL OF A PARTICULAR SUB-UNIT</subject><subject>TRANSPORTING</subject><subject>VEHICLES IN GENERAL</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFD0Lc0pydRNTE_NK1EoKUrMSk0uyS-qVCgoSk3JTC7JzM_jYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxocGGhhaGZpYGhk5GxsSoAQCtuyYx</recordid><startdate>20231114</startdate><enddate>20231114</enddate><creator>Liu, Buyu</creator><creator>Moslemi, Ramin</creator><creator>Chandraker, Manmohan</creator><creator>Pittaluga, Francesco</creator><creator>Narayanan, Sriram Nochur</creator><scope>EVB</scope></search><sort><creationdate>20231114</creationdate><title>Multi-agent trajectory prediction</title><author>Liu, Buyu ; Moslemi, Ramin ; Chandraker, Manmohan ; Pittaluga, Francesco ; Narayanan, Sriram Nochur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11816901B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE ORDIFFERENT FUNCTION</topic><topic>CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PERFORMING OPERATIONS</topic><topic>PHYSICS</topic><topic>ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TOTHE CONTROL OF A PARTICULAR SUB-UNIT</topic><topic>TRANSPORTING</topic><topic>VEHICLES IN GENERAL</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Buyu</creatorcontrib><creatorcontrib>Moslemi, Ramin</creatorcontrib><creatorcontrib>Chandraker, Manmohan</creatorcontrib><creatorcontrib>Pittaluga, Francesco</creatorcontrib><creatorcontrib>Narayanan, Sriram Nochur</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Buyu</au><au>Moslemi, Ramin</au><au>Chandraker, Manmohan</au><au>Pittaluga, Francesco</au><au>Narayanan, Sriram Nochur</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multi-agent trajectory prediction</title><date>2023-11-14</date><risdate>2023</risdate><abstract>Methods and systems for training a trajectory prediction model and performing a vehicle maneuver include encoding a set of training data to generate encoded training vectors, where the training data includes trajectory information for agents over time. Trajectory scenarios are simulated based on the encoded training vectors, with each simulated trajectory scenario representing one or more agents with respective agent trajectories, to generate simulated training data. A predictive neural network model is trained using the simulated training data to generate predicted trajectory scenarios based on a detected scene.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11816901B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE ORDIFFERENT FUNCTION
CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PERFORMING OPERATIONS
PHYSICS
ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TOTHE CONTROL OF A PARTICULAR SUB-UNIT
TRANSPORTING
VEHICLES IN GENERAL
title Multi-agent trajectory prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A31%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Liu,%20Buyu&rft.date=2023-11-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11816901B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true