Machine-learning for sedimentary facies prediction
Using machine learning for sedimentary facies prediction by using one or more logs acquired in a borehole. This includes performing a petrophysical clustering of borehole depths wherein the depths of the borehole are gathered into clusters based on similarities in the one or more logs. Also performe...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Boyd, Austin Bize-Forest, Nadege Lima de Carvalho, Lucas Lima Angelo dos Santos, Laura Baines, Victoria Kherroubi, Josselin Schlicht, Peter |
description | Using machine learning for sedimentary facies prediction by using one or more logs acquired in a borehole. This includes performing a petrophysical clustering of borehole depths wherein the depths of the borehole are gathered into clusters based on similarities in the one or more logs. Also performed is a log inclusion optimization, including a selection of one or more parameters of the petrophysical clustering, wherein the one or more parameters include a number and/or type of considered logs among the one or more logs and/or a clustering method. Also performed is a classification of the clusters into core depositional facies using one or more predetermined rules. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11814931B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11814931B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11814931B23</originalsourceid><addsrcrecordid>eNrjZDDyTUzOyMxL1c1JTSzKy8xLV0jLL1IoTk3JzE3NK0ksqlRIS0zOTC1WKCgCiiWXZObn8TCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSS-NBgQ0MLQxNLY0MnI2Ni1AAA6Pksfw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Machine-learning for sedimentary facies prediction</title><source>esp@cenet</source><creator>Boyd, Austin ; Bize-Forest, Nadege ; Lima de Carvalho, Lucas ; Lima Angelo dos Santos, Laura ; Baines, Victoria ; Kherroubi, Josselin ; Schlicht, Peter</creator><creatorcontrib>Boyd, Austin ; Bize-Forest, Nadege ; Lima de Carvalho, Lucas ; Lima Angelo dos Santos, Laura ; Baines, Victoria ; Kherroubi, Josselin ; Schlicht, Peter</creatorcontrib><description>Using machine learning for sedimentary facies prediction by using one or more logs acquired in a borehole. This includes performing a petrophysical clustering of borehole depths wherein the depths of the borehole are gathered into clusters based on similarities in the one or more logs. Also performed is a log inclusion optimization, including a selection of one or more parameters of the petrophysical clustering, wherein the one or more parameters include a number and/or type of considered logs among the one or more logs and/or a clustering method. Also performed is a classification of the clusters into core depositional facies using one or more predetermined rules.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; DETECTING MASSES OR OBJECTS ; EARTH DRILLING ; EARTH DRILLING, e.g. DEEP DRILLING ; ELECTRIC DIGITAL DATA PROCESSING ; FIXED CONSTRUCTIONS ; GEOPHYSICS ; GRAVITATIONAL MEASUREMENTS ; MEASURING ; MINING ; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR ; TESTING</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231114&DB=EPODOC&CC=US&NR=11814931B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231114&DB=EPODOC&CC=US&NR=11814931B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Boyd, Austin</creatorcontrib><creatorcontrib>Bize-Forest, Nadege</creatorcontrib><creatorcontrib>Lima de Carvalho, Lucas</creatorcontrib><creatorcontrib>Lima Angelo dos Santos, Laura</creatorcontrib><creatorcontrib>Baines, Victoria</creatorcontrib><creatorcontrib>Kherroubi, Josselin</creatorcontrib><creatorcontrib>Schlicht, Peter</creatorcontrib><title>Machine-learning for sedimentary facies prediction</title><description>Using machine learning for sedimentary facies prediction by using one or more logs acquired in a borehole. This includes performing a petrophysical clustering of borehole depths wherein the depths of the borehole are gathered into clusters based on similarities in the one or more logs. Also performed is a log inclusion optimization, including a selection of one or more parameters of the petrophysical clustering, wherein the one or more parameters include a number and/or type of considered logs among the one or more logs and/or a clustering method. Also performed is a classification of the clusters into core depositional facies using one or more predetermined rules.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>DETECTING MASSES OR OBJECTS</subject><subject>EARTH DRILLING</subject><subject>EARTH DRILLING, e.g. DEEP DRILLING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>FIXED CONSTRUCTIONS</subject><subject>GEOPHYSICS</subject><subject>GRAVITATIONAL MEASUREMENTS</subject><subject>MEASURING</subject><subject>MINING</subject><subject>OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDDyTUzOyMxL1c1JTSzKy8xLV0jLL1IoTk3JzE3NK0ksqlRIS0zOTC1WKCgCiiWXZObn8TCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSS-NBgQ0MLQxNLY0MnI2Ni1AAA6Pksfw</recordid><startdate>20231114</startdate><enddate>20231114</enddate><creator>Boyd, Austin</creator><creator>Bize-Forest, Nadege</creator><creator>Lima de Carvalho, Lucas</creator><creator>Lima Angelo dos Santos, Laura</creator><creator>Baines, Victoria</creator><creator>Kherroubi, Josselin</creator><creator>Schlicht, Peter</creator><scope>EVB</scope></search><sort><creationdate>20231114</creationdate><title>Machine-learning for sedimentary facies prediction</title><author>Boyd, Austin ; Bize-Forest, Nadege ; Lima de Carvalho, Lucas ; Lima Angelo dos Santos, Laura ; Baines, Victoria ; Kherroubi, Josselin ; Schlicht, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11814931B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>DETECTING MASSES OR OBJECTS</topic><topic>EARTH DRILLING</topic><topic>EARTH DRILLING, e.g. DEEP DRILLING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>FIXED CONSTRUCTIONS</topic><topic>GEOPHYSICS</topic><topic>GRAVITATIONAL MEASUREMENTS</topic><topic>MEASURING</topic><topic>MINING</topic><topic>OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>Boyd, Austin</creatorcontrib><creatorcontrib>Bize-Forest, Nadege</creatorcontrib><creatorcontrib>Lima de Carvalho, Lucas</creatorcontrib><creatorcontrib>Lima Angelo dos Santos, Laura</creatorcontrib><creatorcontrib>Baines, Victoria</creatorcontrib><creatorcontrib>Kherroubi, Josselin</creatorcontrib><creatorcontrib>Schlicht, Peter</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Boyd, Austin</au><au>Bize-Forest, Nadege</au><au>Lima de Carvalho, Lucas</au><au>Lima Angelo dos Santos, Laura</au><au>Baines, Victoria</au><au>Kherroubi, Josselin</au><au>Schlicht, Peter</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Machine-learning for sedimentary facies prediction</title><date>2023-11-14</date><risdate>2023</risdate><abstract>Using machine learning for sedimentary facies prediction by using one or more logs acquired in a borehole. This includes performing a petrophysical clustering of borehole depths wherein the depths of the borehole are gathered into clusters based on similarities in the one or more logs. Also performed is a log inclusion optimization, including a selection of one or more parameters of the petrophysical clustering, wherein the one or more parameters include a number and/or type of considered logs among the one or more logs and/or a clustering method. Also performed is a classification of the clusters into core depositional facies using one or more predetermined rules.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11814931B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES DETECTING MASSES OR OBJECTS EARTH DRILLING EARTH DRILLING, e.g. DEEP DRILLING ELECTRIC DIGITAL DATA PROCESSING FIXED CONSTRUCTIONS GEOPHYSICS GRAVITATIONAL MEASUREMENTS MEASURING MINING OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR TESTING |
title | Machine-learning for sedimentary facies prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A20%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Boyd,%20Austin&rft.date=2023-11-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11814931B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |