Machine-learning for sedimentary facies prediction

Using machine learning for sedimentary facies prediction by using one or more logs acquired in a borehole. This includes performing a petrophysical clustering of borehole depths wherein the depths of the borehole are gathered into clusters based on similarities in the one or more logs. Also performe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Boyd, Austin, Bize-Forest, Nadege, Lima de Carvalho, Lucas, Lima Angelo dos Santos, Laura, Baines, Victoria, Kherroubi, Josselin, Schlicht, Peter
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Boyd, Austin
Bize-Forest, Nadege
Lima de Carvalho, Lucas
Lima Angelo dos Santos, Laura
Baines, Victoria
Kherroubi, Josselin
Schlicht, Peter
description Using machine learning for sedimentary facies prediction by using one or more logs acquired in a borehole. This includes performing a petrophysical clustering of borehole depths wherein the depths of the borehole are gathered into clusters based on similarities in the one or more logs. Also performed is a log inclusion optimization, including a selection of one or more parameters of the petrophysical clustering, wherein the one or more parameters include a number and/or type of considered logs among the one or more logs and/or a clustering method. Also performed is a classification of the clusters into core depositional facies using one or more predetermined rules.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11814931B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11814931B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11814931B23</originalsourceid><addsrcrecordid>eNrjZDDyTUzOyMxL1c1JTSzKy8xLV0jLL1IoTk3JzE3NK0ksqlRIS0zOTC1WKCgCiiWXZObn8TCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSS-NBgQ0MLQxNLY0MnI2Ni1AAA6Pksfw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Machine-learning for sedimentary facies prediction</title><source>esp@cenet</source><creator>Boyd, Austin ; Bize-Forest, Nadege ; Lima de Carvalho, Lucas ; Lima Angelo dos Santos, Laura ; Baines, Victoria ; Kherroubi, Josselin ; Schlicht, Peter</creator><creatorcontrib>Boyd, Austin ; Bize-Forest, Nadege ; Lima de Carvalho, Lucas ; Lima Angelo dos Santos, Laura ; Baines, Victoria ; Kherroubi, Josselin ; Schlicht, Peter</creatorcontrib><description>Using machine learning for sedimentary facies prediction by using one or more logs acquired in a borehole. This includes performing a petrophysical clustering of borehole depths wherein the depths of the borehole are gathered into clusters based on similarities in the one or more logs. Also performed is a log inclusion optimization, including a selection of one or more parameters of the petrophysical clustering, wherein the one or more parameters include a number and/or type of considered logs among the one or more logs and/or a clustering method. Also performed is a classification of the clusters into core depositional facies using one or more predetermined rules.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; DETECTING MASSES OR OBJECTS ; EARTH DRILLING ; EARTH DRILLING, e.g. DEEP DRILLING ; ELECTRIC DIGITAL DATA PROCESSING ; FIXED CONSTRUCTIONS ; GEOPHYSICS ; GRAVITATIONAL MEASUREMENTS ; MEASURING ; MINING ; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR ; TESTING</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231114&amp;DB=EPODOC&amp;CC=US&amp;NR=11814931B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231114&amp;DB=EPODOC&amp;CC=US&amp;NR=11814931B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Boyd, Austin</creatorcontrib><creatorcontrib>Bize-Forest, Nadege</creatorcontrib><creatorcontrib>Lima de Carvalho, Lucas</creatorcontrib><creatorcontrib>Lima Angelo dos Santos, Laura</creatorcontrib><creatorcontrib>Baines, Victoria</creatorcontrib><creatorcontrib>Kherroubi, Josselin</creatorcontrib><creatorcontrib>Schlicht, Peter</creatorcontrib><title>Machine-learning for sedimentary facies prediction</title><description>Using machine learning for sedimentary facies prediction by using one or more logs acquired in a borehole. This includes performing a petrophysical clustering of borehole depths wherein the depths of the borehole are gathered into clusters based on similarities in the one or more logs. Also performed is a log inclusion optimization, including a selection of one or more parameters of the petrophysical clustering, wherein the one or more parameters include a number and/or type of considered logs among the one or more logs and/or a clustering method. Also performed is a classification of the clusters into core depositional facies using one or more predetermined rules.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>DETECTING MASSES OR OBJECTS</subject><subject>EARTH DRILLING</subject><subject>EARTH DRILLING, e.g. DEEP DRILLING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>FIXED CONSTRUCTIONS</subject><subject>GEOPHYSICS</subject><subject>GRAVITATIONAL MEASUREMENTS</subject><subject>MEASURING</subject><subject>MINING</subject><subject>OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDDyTUzOyMxL1c1JTSzKy8xLV0jLL1IoTk3JzE3NK0ksqlRIS0zOTC1WKCgCiiWXZObn8TCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSS-NBgQ0MLQxNLY0MnI2Ni1AAA6Pksfw</recordid><startdate>20231114</startdate><enddate>20231114</enddate><creator>Boyd, Austin</creator><creator>Bize-Forest, Nadege</creator><creator>Lima de Carvalho, Lucas</creator><creator>Lima Angelo dos Santos, Laura</creator><creator>Baines, Victoria</creator><creator>Kherroubi, Josselin</creator><creator>Schlicht, Peter</creator><scope>EVB</scope></search><sort><creationdate>20231114</creationdate><title>Machine-learning for sedimentary facies prediction</title><author>Boyd, Austin ; Bize-Forest, Nadege ; Lima de Carvalho, Lucas ; Lima Angelo dos Santos, Laura ; Baines, Victoria ; Kherroubi, Josselin ; Schlicht, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11814931B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>DETECTING MASSES OR OBJECTS</topic><topic>EARTH DRILLING</topic><topic>EARTH DRILLING, e.g. DEEP DRILLING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>FIXED CONSTRUCTIONS</topic><topic>GEOPHYSICS</topic><topic>GRAVITATIONAL MEASUREMENTS</topic><topic>MEASURING</topic><topic>MINING</topic><topic>OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>Boyd, Austin</creatorcontrib><creatorcontrib>Bize-Forest, Nadege</creatorcontrib><creatorcontrib>Lima de Carvalho, Lucas</creatorcontrib><creatorcontrib>Lima Angelo dos Santos, Laura</creatorcontrib><creatorcontrib>Baines, Victoria</creatorcontrib><creatorcontrib>Kherroubi, Josselin</creatorcontrib><creatorcontrib>Schlicht, Peter</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Boyd, Austin</au><au>Bize-Forest, Nadege</au><au>Lima de Carvalho, Lucas</au><au>Lima Angelo dos Santos, Laura</au><au>Baines, Victoria</au><au>Kherroubi, Josselin</au><au>Schlicht, Peter</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Machine-learning for sedimentary facies prediction</title><date>2023-11-14</date><risdate>2023</risdate><abstract>Using machine learning for sedimentary facies prediction by using one or more logs acquired in a borehole. This includes performing a petrophysical clustering of borehole depths wherein the depths of the borehole are gathered into clusters based on similarities in the one or more logs. Also performed is a log inclusion optimization, including a selection of one or more parameters of the petrophysical clustering, wherein the one or more parameters include a number and/or type of considered logs among the one or more logs and/or a clustering method. Also performed is a classification of the clusters into core depositional facies using one or more predetermined rules.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11814931B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
DETECTING MASSES OR OBJECTS
EARTH DRILLING
EARTH DRILLING, e.g. DEEP DRILLING
ELECTRIC DIGITAL DATA PROCESSING
FIXED CONSTRUCTIONS
GEOPHYSICS
GRAVITATIONAL MEASUREMENTS
MEASURING
MINING
OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
TESTING
title Machine-learning for sedimentary facies prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A20%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Boyd,%20Austin&rft.date=2023-11-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11814931B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true