Identification and prioritization of optimum capacity solutions in a telecommunications network

Systems and methods that use historical data comprising capacity gain solutions and their associated gains at various locations to train a machine learning model. The trained machine learning model, upon receiving a new location (e.g., latitude and longitude coordinates), recommends the top n (e.g.,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jat, Khrum Kashan, Kondapally, Spoorthy, Sandhu, Jatinder Singh, Sacks, Jessica
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Jat, Khrum Kashan
Kondapally, Spoorthy
Sandhu, Jatinder Singh
Sacks, Jessica
description Systems and methods that use historical data comprising capacity gain solutions and their associated gains at various locations to train a machine learning model. The trained machine learning model, upon receiving a new location (e.g., latitude and longitude coordinates), recommends the top n (e.g., the top 3) solutions that should be deployed at the new location to improve telecommunications network performance. The machine learning model uses clustering techniques to perform the recommendations.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11792662B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11792662B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11792662B23</originalsourceid><addsrcrecordid>eNqNjDEKAjEQRdNYiHqH8QAWu8KKraJordYhZGdh2CQTkgmipzfiHsDqw__vv7nS1x6D0EDWCHEAE3qIiTiR0PtX8QAchXzxYE00luQFmV35jhmofkDQoWXvS5g8GQLKk9O4VLPBuIyrKRdqfT7dj5cNRtaYqw4rqR-3ptnt265rD-32H-YDP_8-lQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Identification and prioritization of optimum capacity solutions in a telecommunications network</title><source>esp@cenet</source><creator>Jat, Khrum Kashan ; Kondapally, Spoorthy ; Sandhu, Jatinder Singh ; Sacks, Jessica</creator><creatorcontrib>Jat, Khrum Kashan ; Kondapally, Spoorthy ; Sandhu, Jatinder Singh ; Sacks, Jessica</creatorcontrib><description>Systems and methods that use historical data comprising capacity gain solutions and their associated gains at various locations to train a machine learning model. The trained machine learning model, upon receiving a new location (e.g., latitude and longitude coordinates), recommends the top n (e.g., the top 3) solutions that should be deployed at the new location to improve telecommunications network performance. The machine learning model uses clustering techniques to perform the recommendations.</description><language>eng</language><subject>ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; WIRELESS COMMUNICATIONS NETWORKS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231017&amp;DB=EPODOC&amp;CC=US&amp;NR=11792662B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231017&amp;DB=EPODOC&amp;CC=US&amp;NR=11792662B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Jat, Khrum Kashan</creatorcontrib><creatorcontrib>Kondapally, Spoorthy</creatorcontrib><creatorcontrib>Sandhu, Jatinder Singh</creatorcontrib><creatorcontrib>Sacks, Jessica</creatorcontrib><title>Identification and prioritization of optimum capacity solutions in a telecommunications network</title><description>Systems and methods that use historical data comprising capacity gain solutions and their associated gains at various locations to train a machine learning model. The trained machine learning model, upon receiving a new location (e.g., latitude and longitude coordinates), recommends the top n (e.g., the top 3) solutions that should be deployed at the new location to improve telecommunications network performance. The machine learning model uses clustering techniques to perform the recommendations.</description><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>WIRELESS COMMUNICATIONS NETWORKS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEKAjEQRdNYiHqH8QAWu8KKraJordYhZGdh2CQTkgmipzfiHsDqw__vv7nS1x6D0EDWCHEAE3qIiTiR0PtX8QAchXzxYE00luQFmV35jhmofkDQoWXvS5g8GQLKk9O4VLPBuIyrKRdqfT7dj5cNRtaYqw4rqR-3ptnt265rD-32H-YDP_8-lQ</recordid><startdate>20231017</startdate><enddate>20231017</enddate><creator>Jat, Khrum Kashan</creator><creator>Kondapally, Spoorthy</creator><creator>Sandhu, Jatinder Singh</creator><creator>Sacks, Jessica</creator><scope>EVB</scope></search><sort><creationdate>20231017</creationdate><title>Identification and prioritization of optimum capacity solutions in a telecommunications network</title><author>Jat, Khrum Kashan ; Kondapally, Spoorthy ; Sandhu, Jatinder Singh ; Sacks, Jessica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11792662B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>WIRELESS COMMUNICATIONS NETWORKS</topic><toplevel>online_resources</toplevel><creatorcontrib>Jat, Khrum Kashan</creatorcontrib><creatorcontrib>Kondapally, Spoorthy</creatorcontrib><creatorcontrib>Sandhu, Jatinder Singh</creatorcontrib><creatorcontrib>Sacks, Jessica</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jat, Khrum Kashan</au><au>Kondapally, Spoorthy</au><au>Sandhu, Jatinder Singh</au><au>Sacks, Jessica</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Identification and prioritization of optimum capacity solutions in a telecommunications network</title><date>2023-10-17</date><risdate>2023</risdate><abstract>Systems and methods that use historical data comprising capacity gain solutions and their associated gains at various locations to train a machine learning model. The trained machine learning model, upon receiving a new location (e.g., latitude and longitude coordinates), recommends the top n (e.g., the top 3) solutions that should be deployed at the new location to improve telecommunications network performance. The machine learning model uses clustering techniques to perform the recommendations.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11792662B2
source esp@cenet
subjects ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
WIRELESS COMMUNICATIONS NETWORKS
title Identification and prioritization of optimum capacity solutions in a telecommunications network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A29%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Jat,%20Khrum%20Kashan&rft.date=2023-10-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11792662B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true