Identification and prioritization of optimum capacity solutions in a telecommunications network
Systems and methods that use historical data comprising capacity gain solutions and their associated gains at various locations to train a machine learning model. The trained machine learning model, upon receiving a new location (e.g., latitude and longitude coordinates), recommends the top n (e.g.,...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Jat, Khrum Kashan Kondapally, Spoorthy Sandhu, Jatinder Singh Sacks, Jessica |
description | Systems and methods that use historical data comprising capacity gain solutions and their associated gains at various locations to train a machine learning model. The trained machine learning model, upon receiving a new location (e.g., latitude and longitude coordinates), recommends the top n (e.g., the top 3) solutions that should be deployed at the new location to improve telecommunications network performance. The machine learning model uses clustering techniques to perform the recommendations. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11792662B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11792662B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11792662B23</originalsourceid><addsrcrecordid>eNqNjDEKAjEQRdNYiHqH8QAWu8KKraJordYhZGdh2CQTkgmipzfiHsDqw__vv7nS1x6D0EDWCHEAE3qIiTiR0PtX8QAchXzxYE00luQFmV35jhmofkDQoWXvS5g8GQLKk9O4VLPBuIyrKRdqfT7dj5cNRtaYqw4rqR-3ptnt265rD-32H-YDP_8-lQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Identification and prioritization of optimum capacity solutions in a telecommunications network</title><source>esp@cenet</source><creator>Jat, Khrum Kashan ; Kondapally, Spoorthy ; Sandhu, Jatinder Singh ; Sacks, Jessica</creator><creatorcontrib>Jat, Khrum Kashan ; Kondapally, Spoorthy ; Sandhu, Jatinder Singh ; Sacks, Jessica</creatorcontrib><description>Systems and methods that use historical data comprising capacity gain solutions and their associated gains at various locations to train a machine learning model. The trained machine learning model, upon receiving a new location (e.g., latitude and longitude coordinates), recommends the top n (e.g., the top 3) solutions that should be deployed at the new location to improve telecommunications network performance. The machine learning model uses clustering techniques to perform the recommendations.</description><language>eng</language><subject>ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; WIRELESS COMMUNICATIONS NETWORKS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231017&DB=EPODOC&CC=US&NR=11792662B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231017&DB=EPODOC&CC=US&NR=11792662B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Jat, Khrum Kashan</creatorcontrib><creatorcontrib>Kondapally, Spoorthy</creatorcontrib><creatorcontrib>Sandhu, Jatinder Singh</creatorcontrib><creatorcontrib>Sacks, Jessica</creatorcontrib><title>Identification and prioritization of optimum capacity solutions in a telecommunications network</title><description>Systems and methods that use historical data comprising capacity gain solutions and their associated gains at various locations to train a machine learning model. The trained machine learning model, upon receiving a new location (e.g., latitude and longitude coordinates), recommends the top n (e.g., the top 3) solutions that should be deployed at the new location to improve telecommunications network performance. The machine learning model uses clustering techniques to perform the recommendations.</description><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>WIRELESS COMMUNICATIONS NETWORKS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEKAjEQRdNYiHqH8QAWu8KKraJordYhZGdh2CQTkgmipzfiHsDqw__vv7nS1x6D0EDWCHEAE3qIiTiR0PtX8QAchXzxYE00luQFmV35jhmofkDQoWXvS5g8GQLKk9O4VLPBuIyrKRdqfT7dj5cNRtaYqw4rqR-3ptnt265rD-32H-YDP_8-lQ</recordid><startdate>20231017</startdate><enddate>20231017</enddate><creator>Jat, Khrum Kashan</creator><creator>Kondapally, Spoorthy</creator><creator>Sandhu, Jatinder Singh</creator><creator>Sacks, Jessica</creator><scope>EVB</scope></search><sort><creationdate>20231017</creationdate><title>Identification and prioritization of optimum capacity solutions in a telecommunications network</title><author>Jat, Khrum Kashan ; Kondapally, Spoorthy ; Sandhu, Jatinder Singh ; Sacks, Jessica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11792662B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>WIRELESS COMMUNICATIONS NETWORKS</topic><toplevel>online_resources</toplevel><creatorcontrib>Jat, Khrum Kashan</creatorcontrib><creatorcontrib>Kondapally, Spoorthy</creatorcontrib><creatorcontrib>Sandhu, Jatinder Singh</creatorcontrib><creatorcontrib>Sacks, Jessica</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jat, Khrum Kashan</au><au>Kondapally, Spoorthy</au><au>Sandhu, Jatinder Singh</au><au>Sacks, Jessica</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Identification and prioritization of optimum capacity solutions in a telecommunications network</title><date>2023-10-17</date><risdate>2023</risdate><abstract>Systems and methods that use historical data comprising capacity gain solutions and their associated gains at various locations to train a machine learning model. The trained machine learning model, upon receiving a new location (e.g., latitude and longitude coordinates), recommends the top n (e.g., the top 3) solutions that should be deployed at the new location to improve telecommunications network performance. The machine learning model uses clustering techniques to perform the recommendations.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11792662B2 |
source | esp@cenet |
subjects | ELECTRIC COMMUNICATION TECHNIQUE ELECTRICITY WIRELESS COMMUNICATIONS NETWORKS |
title | Identification and prioritization of optimum capacity solutions in a telecommunications network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A29%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Jat,%20Khrum%20Kashan&rft.date=2023-10-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11792662B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |