Training artificial intelligence models using active learning

Aspects of the present invention provide an approach for reducing bias in active learning. In an embodiment, a data point is selected from a training dataset for a current training iteration while monitoring for data bias at each addition of data to a virtual training dataset. In addition, a machine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bhide, Manish Anand, Dey, Kuntal, Mehta, Sameep
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Bhide, Manish Anand
Dey, Kuntal
Mehta, Sameep
description Aspects of the present invention provide an approach for reducing bias in active learning. In an embodiment, a data point is selected from a training dataset for a current training iteration while monitoring for data bias at each addition of data to a virtual training dataset. In addition, a machine learning model is examined for bias after adding the selected data point to the virtual training dataset. When data bias and/or model bias is detected, the data point is considered for potential label modification. The selected data point is modified and, if the raw value of the modified data point is within a predefined tolerance and within a bin of a desired class, the modified data point having a label of the target class is retained. Otherwise, it can be discarded.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11790265B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11790265B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11790265B23</originalsourceid><addsrcrecordid>eNrjZLANKUrMzMvMS1dILCrJTMtMzkzMUcjMK0nNyclMT81LTlXIzU9JzSlWKC0GK0ouySxLVchJTSwCaeJhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfGhwYaG5pYGRmamTkbGxKgBAF8RMNM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Training artificial intelligence models using active learning</title><source>esp@cenet</source><creator>Bhide, Manish Anand ; Dey, Kuntal ; Mehta, Sameep</creator><creatorcontrib>Bhide, Manish Anand ; Dey, Kuntal ; Mehta, Sameep</creatorcontrib><description>Aspects of the present invention provide an approach for reducing bias in active learning. In an embodiment, a data point is selected from a training dataset for a current training iteration while monitoring for data bias at each addition of data to a virtual training dataset. In addition, a machine learning model is examined for bias after adding the selected data point to the virtual training dataset. When data bias and/or model bias is detected, the data point is considered for potential label modification. The selected data point is modified and, if the raw value of the modified data point is within a predefined tolerance and within a bin of a desired class, the modified data point having a label of the target class is retained. Otherwise, it can be discarded.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231017&amp;DB=EPODOC&amp;CC=US&amp;NR=11790265B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231017&amp;DB=EPODOC&amp;CC=US&amp;NR=11790265B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Bhide, Manish Anand</creatorcontrib><creatorcontrib>Dey, Kuntal</creatorcontrib><creatorcontrib>Mehta, Sameep</creatorcontrib><title>Training artificial intelligence models using active learning</title><description>Aspects of the present invention provide an approach for reducing bias in active learning. In an embodiment, a data point is selected from a training dataset for a current training iteration while monitoring for data bias at each addition of data to a virtual training dataset. In addition, a machine learning model is examined for bias after adding the selected data point to the virtual training dataset. When data bias and/or model bias is detected, the data point is considered for potential label modification. The selected data point is modified and, if the raw value of the modified data point is within a predefined tolerance and within a bin of a desired class, the modified data point having a label of the target class is retained. Otherwise, it can be discarded.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLANKUrMzMvMS1dILCrJTMtMzkzMUcjMK0nNyclMT81LTlXIzU9JzSlWKC0GK0ouySxLVchJTSwCaeJhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfGhwYaG5pYGRmamTkbGxKgBAF8RMNM</recordid><startdate>20231017</startdate><enddate>20231017</enddate><creator>Bhide, Manish Anand</creator><creator>Dey, Kuntal</creator><creator>Mehta, Sameep</creator><scope>EVB</scope></search><sort><creationdate>20231017</creationdate><title>Training artificial intelligence models using active learning</title><author>Bhide, Manish Anand ; Dey, Kuntal ; Mehta, Sameep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11790265B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Bhide, Manish Anand</creatorcontrib><creatorcontrib>Dey, Kuntal</creatorcontrib><creatorcontrib>Mehta, Sameep</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bhide, Manish Anand</au><au>Dey, Kuntal</au><au>Mehta, Sameep</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Training artificial intelligence models using active learning</title><date>2023-10-17</date><risdate>2023</risdate><abstract>Aspects of the present invention provide an approach for reducing bias in active learning. In an embodiment, a data point is selected from a training dataset for a current training iteration while monitoring for data bias at each addition of data to a virtual training dataset. In addition, a machine learning model is examined for bias after adding the selected data point to the virtual training dataset. When data bias and/or model bias is detected, the data point is considered for potential label modification. The selected data point is modified and, if the raw value of the modified data point is within a predefined tolerance and within a bin of a desired class, the modified data point having a label of the target class is retained. Otherwise, it can be discarded.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11790265B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Training artificial intelligence models using active learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A22%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Bhide,%20Manish%20Anand&rft.date=2023-10-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11790265B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true