Training artificial intelligence models using active learning
Aspects of the present invention provide an approach for reducing bias in active learning. In an embodiment, a data point is selected from a training dataset for a current training iteration while monitoring for data bias at each addition of data to a virtual training dataset. In addition, a machine...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Bhide, Manish Anand Dey, Kuntal Mehta, Sameep |
description | Aspects of the present invention provide an approach for reducing bias in active learning. In an embodiment, a data point is selected from a training dataset for a current training iteration while monitoring for data bias at each addition of data to a virtual training dataset. In addition, a machine learning model is examined for bias after adding the selected data point to the virtual training dataset. When data bias and/or model bias is detected, the data point is considered for potential label modification. The selected data point is modified and, if the raw value of the modified data point is within a predefined tolerance and within a bin of a desired class, the modified data point having a label of the target class is retained. Otherwise, it can be discarded. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11790265B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11790265B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11790265B23</originalsourceid><addsrcrecordid>eNrjZLANKUrMzMvMS1dILCrJTMtMzkzMUcjMK0nNyclMT81LTlXIzU9JzSlWKC0GK0ouySxLVchJTSwCaeJhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfGhwYaG5pYGRmamTkbGxKgBAF8RMNM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Training artificial intelligence models using active learning</title><source>esp@cenet</source><creator>Bhide, Manish Anand ; Dey, Kuntal ; Mehta, Sameep</creator><creatorcontrib>Bhide, Manish Anand ; Dey, Kuntal ; Mehta, Sameep</creatorcontrib><description>Aspects of the present invention provide an approach for reducing bias in active learning. In an embodiment, a data point is selected from a training dataset for a current training iteration while monitoring for data bias at each addition of data to a virtual training dataset. In addition, a machine learning model is examined for bias after adding the selected data point to the virtual training dataset. When data bias and/or model bias is detected, the data point is considered for potential label modification. The selected data point is modified and, if the raw value of the modified data point is within a predefined tolerance and within a bin of a desired class, the modified data point having a label of the target class is retained. Otherwise, it can be discarded.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231017&DB=EPODOC&CC=US&NR=11790265B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231017&DB=EPODOC&CC=US&NR=11790265B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Bhide, Manish Anand</creatorcontrib><creatorcontrib>Dey, Kuntal</creatorcontrib><creatorcontrib>Mehta, Sameep</creatorcontrib><title>Training artificial intelligence models using active learning</title><description>Aspects of the present invention provide an approach for reducing bias in active learning. In an embodiment, a data point is selected from a training dataset for a current training iteration while monitoring for data bias at each addition of data to a virtual training dataset. In addition, a machine learning model is examined for bias after adding the selected data point to the virtual training dataset. When data bias and/or model bias is detected, the data point is considered for potential label modification. The selected data point is modified and, if the raw value of the modified data point is within a predefined tolerance and within a bin of a desired class, the modified data point having a label of the target class is retained. Otherwise, it can be discarded.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLANKUrMzMvMS1dILCrJTMtMzkzMUcjMK0nNyclMT81LTlXIzU9JzSlWKC0GK0ouySxLVchJTSwCaeJhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfGhwYaG5pYGRmamTkbGxKgBAF8RMNM</recordid><startdate>20231017</startdate><enddate>20231017</enddate><creator>Bhide, Manish Anand</creator><creator>Dey, Kuntal</creator><creator>Mehta, Sameep</creator><scope>EVB</scope></search><sort><creationdate>20231017</creationdate><title>Training artificial intelligence models using active learning</title><author>Bhide, Manish Anand ; Dey, Kuntal ; Mehta, Sameep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11790265B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Bhide, Manish Anand</creatorcontrib><creatorcontrib>Dey, Kuntal</creatorcontrib><creatorcontrib>Mehta, Sameep</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bhide, Manish Anand</au><au>Dey, Kuntal</au><au>Mehta, Sameep</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Training artificial intelligence models using active learning</title><date>2023-10-17</date><risdate>2023</risdate><abstract>Aspects of the present invention provide an approach for reducing bias in active learning. In an embodiment, a data point is selected from a training dataset for a current training iteration while monitoring for data bias at each addition of data to a virtual training dataset. In addition, a machine learning model is examined for bias after adding the selected data point to the virtual training dataset. When data bias and/or model bias is detected, the data point is considered for potential label modification. The selected data point is modified and, if the raw value of the modified data point is within a predefined tolerance and within a bin of a desired class, the modified data point having a label of the target class is retained. Otherwise, it can be discarded.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11790265B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Training artificial intelligence models using active learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A22%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Bhide,%20Manish%20Anand&rft.date=2023-10-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11790265B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |