Machine-learned models for user interface prediction, generation, and interaction understanding

Generally, the present disclosure is directed to user interface understanding. More particularly, the present disclosure relates to training and utilization of machine-learned models for user interface prediction and/or generation. A machine-learned interface prediction model can be pre-trained usin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wichers, Nevan Holt, Zang, Xiaoxue, He, Zecheng, Sunkara, Srinivas Kumar, Chen, Jindong, Schubiner, Gabriel Overholt, Aguera-Arcas, Blaise, Rastogi, Abhinav Kumar, Liu, Lijuan, Xu, Ying
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Wichers, Nevan Holt
Zang, Xiaoxue
He, Zecheng
Sunkara, Srinivas Kumar
Chen, Jindong
Schubiner, Gabriel Overholt
Aguera-Arcas, Blaise
Rastogi, Abhinav Kumar
Liu, Lijuan
Xu, Ying
description Generally, the present disclosure is directed to user interface understanding. More particularly, the present disclosure relates to training and utilization of machine-learned models for user interface prediction and/or generation. A machine-learned interface prediction model can be pre-trained using a variety of pre-training tasks for eventual downstream task training and utilization (e.g., interface prediction, interface generation, etc.).
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11789753B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11789753B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11789753B23</originalsourceid><addsrcrecordid>eNqNjDEOwjAQBNNQIOAPR0-KEKFACwLRUAG1dYrXwVI4W2fn_0SEB1Dtame088LcuH15QdmDVWDpHSz6RC4oDQlKXjLUcQuKCuvb7INsqINAeeosdrL4C2kQC015nL10y2LmuE9Y_XJRrC_nx-laIgaDFMdjQTbPe1U1-0Ozq4_b-h_nA63EPaI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Machine-learned models for user interface prediction, generation, and interaction understanding</title><source>esp@cenet</source><creator>Wichers, Nevan Holt ; Zang, Xiaoxue ; He, Zecheng ; Sunkara, Srinivas Kumar ; Chen, Jindong ; Schubiner, Gabriel Overholt ; Aguera-Arcas, Blaise ; Rastogi, Abhinav Kumar ; Liu, Lijuan ; Xu, Ying</creator><creatorcontrib>Wichers, Nevan Holt ; Zang, Xiaoxue ; He, Zecheng ; Sunkara, Srinivas Kumar ; Chen, Jindong ; Schubiner, Gabriel Overholt ; Aguera-Arcas, Blaise ; Rastogi, Abhinav Kumar ; Liu, Lijuan ; Xu, Ying</creatorcontrib><description>Generally, the present disclosure is directed to user interface understanding. More particularly, the present disclosure relates to training and utilization of machine-learned models for user interface prediction and/or generation. A machine-learned interface prediction model can be pre-trained using a variety of pre-training tasks for eventual downstream task training and utilization (e.g., interface prediction, interface generation, etc.).</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231017&amp;DB=EPODOC&amp;CC=US&amp;NR=11789753B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231017&amp;DB=EPODOC&amp;CC=US&amp;NR=11789753B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Wichers, Nevan Holt</creatorcontrib><creatorcontrib>Zang, Xiaoxue</creatorcontrib><creatorcontrib>He, Zecheng</creatorcontrib><creatorcontrib>Sunkara, Srinivas Kumar</creatorcontrib><creatorcontrib>Chen, Jindong</creatorcontrib><creatorcontrib>Schubiner, Gabriel Overholt</creatorcontrib><creatorcontrib>Aguera-Arcas, Blaise</creatorcontrib><creatorcontrib>Rastogi, Abhinav Kumar</creatorcontrib><creatorcontrib>Liu, Lijuan</creatorcontrib><creatorcontrib>Xu, Ying</creatorcontrib><title>Machine-learned models for user interface prediction, generation, and interaction understanding</title><description>Generally, the present disclosure is directed to user interface understanding. More particularly, the present disclosure relates to training and utilization of machine-learned models for user interface prediction and/or generation. A machine-learned interface prediction model can be pre-trained using a variety of pre-training tasks for eventual downstream task training and utilization (e.g., interface prediction, interface generation, etc.).</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEOwjAQBNNQIOAPR0-KEKFACwLRUAG1dYrXwVI4W2fn_0SEB1Dtame088LcuH15QdmDVWDpHSz6RC4oDQlKXjLUcQuKCuvb7INsqINAeeosdrL4C2kQC015nL10y2LmuE9Y_XJRrC_nx-laIgaDFMdjQTbPe1U1-0Ozq4_b-h_nA63EPaI</recordid><startdate>20231017</startdate><enddate>20231017</enddate><creator>Wichers, Nevan Holt</creator><creator>Zang, Xiaoxue</creator><creator>He, Zecheng</creator><creator>Sunkara, Srinivas Kumar</creator><creator>Chen, Jindong</creator><creator>Schubiner, Gabriel Overholt</creator><creator>Aguera-Arcas, Blaise</creator><creator>Rastogi, Abhinav Kumar</creator><creator>Liu, Lijuan</creator><creator>Xu, Ying</creator><scope>EVB</scope></search><sort><creationdate>20231017</creationdate><title>Machine-learned models for user interface prediction, generation, and interaction understanding</title><author>Wichers, Nevan Holt ; Zang, Xiaoxue ; He, Zecheng ; Sunkara, Srinivas Kumar ; Chen, Jindong ; Schubiner, Gabriel Overholt ; Aguera-Arcas, Blaise ; Rastogi, Abhinav Kumar ; Liu, Lijuan ; Xu, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11789753B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Wichers, Nevan Holt</creatorcontrib><creatorcontrib>Zang, Xiaoxue</creatorcontrib><creatorcontrib>He, Zecheng</creatorcontrib><creatorcontrib>Sunkara, Srinivas Kumar</creatorcontrib><creatorcontrib>Chen, Jindong</creatorcontrib><creatorcontrib>Schubiner, Gabriel Overholt</creatorcontrib><creatorcontrib>Aguera-Arcas, Blaise</creatorcontrib><creatorcontrib>Rastogi, Abhinav Kumar</creatorcontrib><creatorcontrib>Liu, Lijuan</creatorcontrib><creatorcontrib>Xu, Ying</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wichers, Nevan Holt</au><au>Zang, Xiaoxue</au><au>He, Zecheng</au><au>Sunkara, Srinivas Kumar</au><au>Chen, Jindong</au><au>Schubiner, Gabriel Overholt</au><au>Aguera-Arcas, Blaise</au><au>Rastogi, Abhinav Kumar</au><au>Liu, Lijuan</au><au>Xu, Ying</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Machine-learned models for user interface prediction, generation, and interaction understanding</title><date>2023-10-17</date><risdate>2023</risdate><abstract>Generally, the present disclosure is directed to user interface understanding. More particularly, the present disclosure relates to training and utilization of machine-learned models for user interface prediction and/or generation. A machine-learned interface prediction model can be pre-trained using a variety of pre-training tasks for eventual downstream task training and utilization (e.g., interface prediction, interface generation, etc.).</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11789753B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Machine-learned models for user interface prediction, generation, and interaction understanding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A11%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Wichers,%20Nevan%20Holt&rft.date=2023-10-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11789753B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true