Machine-learned models for user interface prediction, generation, and interaction understanding
Generally, the present disclosure is directed to user interface understanding. More particularly, the present disclosure relates to training and utilization of machine-learned models for user interface prediction and/or generation. A machine-learned interface prediction model can be pre-trained usin...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Wichers, Nevan Holt Zang, Xiaoxue He, Zecheng Sunkara, Srinivas Kumar Chen, Jindong Schubiner, Gabriel Overholt Aguera-Arcas, Blaise Rastogi, Abhinav Kumar Liu, Lijuan Xu, Ying |
description | Generally, the present disclosure is directed to user interface understanding. More particularly, the present disclosure relates to training and utilization of machine-learned models for user interface prediction and/or generation. A machine-learned interface prediction model can be pre-trained using a variety of pre-training tasks for eventual downstream task training and utilization (e.g., interface prediction, interface generation, etc.). |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11789753B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11789753B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11789753B23</originalsourceid><addsrcrecordid>eNqNjDEOwjAQBNNQIOAPR0-KEKFACwLRUAG1dYrXwVI4W2fn_0SEB1Dtame088LcuH15QdmDVWDpHSz6RC4oDQlKXjLUcQuKCuvb7INsqINAeeosdrL4C2kQC015nL10y2LmuE9Y_XJRrC_nx-laIgaDFMdjQTbPe1U1-0Ozq4_b-h_nA63EPaI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Machine-learned models for user interface prediction, generation, and interaction understanding</title><source>esp@cenet</source><creator>Wichers, Nevan Holt ; Zang, Xiaoxue ; He, Zecheng ; Sunkara, Srinivas Kumar ; Chen, Jindong ; Schubiner, Gabriel Overholt ; Aguera-Arcas, Blaise ; Rastogi, Abhinav Kumar ; Liu, Lijuan ; Xu, Ying</creator><creatorcontrib>Wichers, Nevan Holt ; Zang, Xiaoxue ; He, Zecheng ; Sunkara, Srinivas Kumar ; Chen, Jindong ; Schubiner, Gabriel Overholt ; Aguera-Arcas, Blaise ; Rastogi, Abhinav Kumar ; Liu, Lijuan ; Xu, Ying</creatorcontrib><description>Generally, the present disclosure is directed to user interface understanding. More particularly, the present disclosure relates to training and utilization of machine-learned models for user interface prediction and/or generation. A machine-learned interface prediction model can be pre-trained using a variety of pre-training tasks for eventual downstream task training and utilization (e.g., interface prediction, interface generation, etc.).</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231017&DB=EPODOC&CC=US&NR=11789753B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231017&DB=EPODOC&CC=US&NR=11789753B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Wichers, Nevan Holt</creatorcontrib><creatorcontrib>Zang, Xiaoxue</creatorcontrib><creatorcontrib>He, Zecheng</creatorcontrib><creatorcontrib>Sunkara, Srinivas Kumar</creatorcontrib><creatorcontrib>Chen, Jindong</creatorcontrib><creatorcontrib>Schubiner, Gabriel Overholt</creatorcontrib><creatorcontrib>Aguera-Arcas, Blaise</creatorcontrib><creatorcontrib>Rastogi, Abhinav Kumar</creatorcontrib><creatorcontrib>Liu, Lijuan</creatorcontrib><creatorcontrib>Xu, Ying</creatorcontrib><title>Machine-learned models for user interface prediction, generation, and interaction understanding</title><description>Generally, the present disclosure is directed to user interface understanding. More particularly, the present disclosure relates to training and utilization of machine-learned models for user interface prediction and/or generation. A machine-learned interface prediction model can be pre-trained using a variety of pre-training tasks for eventual downstream task training and utilization (e.g., interface prediction, interface generation, etc.).</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEOwjAQBNNQIOAPR0-KEKFACwLRUAG1dYrXwVI4W2fn_0SEB1Dtame088LcuH15QdmDVWDpHSz6RC4oDQlKXjLUcQuKCuvb7INsqINAeeosdrL4C2kQC015nL10y2LmuE9Y_XJRrC_nx-laIgaDFMdjQTbPe1U1-0Ozq4_b-h_nA63EPaI</recordid><startdate>20231017</startdate><enddate>20231017</enddate><creator>Wichers, Nevan Holt</creator><creator>Zang, Xiaoxue</creator><creator>He, Zecheng</creator><creator>Sunkara, Srinivas Kumar</creator><creator>Chen, Jindong</creator><creator>Schubiner, Gabriel Overholt</creator><creator>Aguera-Arcas, Blaise</creator><creator>Rastogi, Abhinav Kumar</creator><creator>Liu, Lijuan</creator><creator>Xu, Ying</creator><scope>EVB</scope></search><sort><creationdate>20231017</creationdate><title>Machine-learned models for user interface prediction, generation, and interaction understanding</title><author>Wichers, Nevan Holt ; Zang, Xiaoxue ; He, Zecheng ; Sunkara, Srinivas Kumar ; Chen, Jindong ; Schubiner, Gabriel Overholt ; Aguera-Arcas, Blaise ; Rastogi, Abhinav Kumar ; Liu, Lijuan ; Xu, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11789753B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Wichers, Nevan Holt</creatorcontrib><creatorcontrib>Zang, Xiaoxue</creatorcontrib><creatorcontrib>He, Zecheng</creatorcontrib><creatorcontrib>Sunkara, Srinivas Kumar</creatorcontrib><creatorcontrib>Chen, Jindong</creatorcontrib><creatorcontrib>Schubiner, Gabriel Overholt</creatorcontrib><creatorcontrib>Aguera-Arcas, Blaise</creatorcontrib><creatorcontrib>Rastogi, Abhinav Kumar</creatorcontrib><creatorcontrib>Liu, Lijuan</creatorcontrib><creatorcontrib>Xu, Ying</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wichers, Nevan Holt</au><au>Zang, Xiaoxue</au><au>He, Zecheng</au><au>Sunkara, Srinivas Kumar</au><au>Chen, Jindong</au><au>Schubiner, Gabriel Overholt</au><au>Aguera-Arcas, Blaise</au><au>Rastogi, Abhinav Kumar</au><au>Liu, Lijuan</au><au>Xu, Ying</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Machine-learned models for user interface prediction, generation, and interaction understanding</title><date>2023-10-17</date><risdate>2023</risdate><abstract>Generally, the present disclosure is directed to user interface understanding. More particularly, the present disclosure relates to training and utilization of machine-learned models for user interface prediction and/or generation. A machine-learned interface prediction model can be pre-trained using a variety of pre-training tasks for eventual downstream task training and utilization (e.g., interface prediction, interface generation, etc.).</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11789753B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Machine-learned models for user interface prediction, generation, and interaction understanding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A11%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Wichers,%20Nevan%20Holt&rft.date=2023-10-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11789753B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |