Automated machine learning test system
A computing device selects new test configurations for testing software. Software under test is executed with first test configurations to generate a test result for each test configuration. Each test configuration includes a value for each test parameter where each test parameter is an input to the...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Lin, Yu-Min Pederson, Bengt Wisen Gao, Yan Tan, Pei-Yi Wright, Raymond Eugene Tharrington, Jr., Ricky Dee Griffin, Joshua David |
description | A computing device selects new test configurations for testing software. Software under test is executed with first test configurations to generate a test result for each test configuration. Each test configuration includes a value for each test parameter where each test parameter is an input to the software under test. A predictive model is trained using each test configuration of the first test configurations in association with the test result generated for each test configuration based on an objective function value. The predictive model is executed with second test configurations to predict the test result for each test configuration of the second test configurations. Test configurations are selected from the second test configurations based on the predicted test results to define third test configurations. The software under test is executed with the defined third test configurations to generate the test result for each test configuration of the third test configurations. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11775878B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11775878B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11775878B23</originalsourceid><addsrcrecordid>eNrjZFBzLC3Jz00sSU1RyE1MzsjMS1XISU0sysvMS1coSS0uUSiuLC5JzeVhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfGhwYaG5uamFuYWTkbGxKgBAIsXKAc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Automated machine learning test system</title><source>esp@cenet</source><creator>Lin, Yu-Min ; Pederson, Bengt Wisen ; Gao, Yan ; Tan, Pei-Yi ; Wright, Raymond Eugene ; Tharrington, Jr., Ricky Dee ; Griffin, Joshua David</creator><creatorcontrib>Lin, Yu-Min ; Pederson, Bengt Wisen ; Gao, Yan ; Tan, Pei-Yi ; Wright, Raymond Eugene ; Tharrington, Jr., Ricky Dee ; Griffin, Joshua David</creatorcontrib><description>A computing device selects new test configurations for testing software. Software under test is executed with first test configurations to generate a test result for each test configuration. Each test configuration includes a value for each test parameter where each test parameter is an input to the software under test. A predictive model is trained using each test configuration of the first test configurations in association with the test result generated for each test configuration based on an objective function value. The predictive model is executed with second test configurations to predict the test result for each test configuration of the second test configurations. Test configurations are selected from the second test configurations based on the predicted test results to define third test configurations. The software under test is executed with the defined third test configurations to generate the test result for each test configuration of the third test configurations.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231003&DB=EPODOC&CC=US&NR=11775878B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231003&DB=EPODOC&CC=US&NR=11775878B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Lin, Yu-Min</creatorcontrib><creatorcontrib>Pederson, Bengt Wisen</creatorcontrib><creatorcontrib>Gao, Yan</creatorcontrib><creatorcontrib>Tan, Pei-Yi</creatorcontrib><creatorcontrib>Wright, Raymond Eugene</creatorcontrib><creatorcontrib>Tharrington, Jr., Ricky Dee</creatorcontrib><creatorcontrib>Griffin, Joshua David</creatorcontrib><title>Automated machine learning test system</title><description>A computing device selects new test configurations for testing software. Software under test is executed with first test configurations to generate a test result for each test configuration. Each test configuration includes a value for each test parameter where each test parameter is an input to the software under test. A predictive model is trained using each test configuration of the first test configurations in association with the test result generated for each test configuration based on an objective function value. The predictive model is executed with second test configurations to predict the test result for each test configuration of the second test configurations. Test configurations are selected from the second test configurations based on the predicted test results to define third test configurations. The software under test is executed with the defined third test configurations to generate the test result for each test configuration of the third test configurations.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFBzLC3Jz00sSU1RyE1MzsjMS1XISU0sysvMS1coSS0uUSiuLC5JzeVhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfGhwYaG5uamFuYWTkbGxKgBAIsXKAc</recordid><startdate>20231003</startdate><enddate>20231003</enddate><creator>Lin, Yu-Min</creator><creator>Pederson, Bengt Wisen</creator><creator>Gao, Yan</creator><creator>Tan, Pei-Yi</creator><creator>Wright, Raymond Eugene</creator><creator>Tharrington, Jr., Ricky Dee</creator><creator>Griffin, Joshua David</creator><scope>EVB</scope></search><sort><creationdate>20231003</creationdate><title>Automated machine learning test system</title><author>Lin, Yu-Min ; Pederson, Bengt Wisen ; Gao, Yan ; Tan, Pei-Yi ; Wright, Raymond Eugene ; Tharrington, Jr., Ricky Dee ; Griffin, Joshua David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11775878B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Lin, Yu-Min</creatorcontrib><creatorcontrib>Pederson, Bengt Wisen</creatorcontrib><creatorcontrib>Gao, Yan</creatorcontrib><creatorcontrib>Tan, Pei-Yi</creatorcontrib><creatorcontrib>Wright, Raymond Eugene</creatorcontrib><creatorcontrib>Tharrington, Jr., Ricky Dee</creatorcontrib><creatorcontrib>Griffin, Joshua David</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, Yu-Min</au><au>Pederson, Bengt Wisen</au><au>Gao, Yan</au><au>Tan, Pei-Yi</au><au>Wright, Raymond Eugene</au><au>Tharrington, Jr., Ricky Dee</au><au>Griffin, Joshua David</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Automated machine learning test system</title><date>2023-10-03</date><risdate>2023</risdate><abstract>A computing device selects new test configurations for testing software. Software under test is executed with first test configurations to generate a test result for each test configuration. Each test configuration includes a value for each test parameter where each test parameter is an input to the software under test. A predictive model is trained using each test configuration of the first test configurations in association with the test result generated for each test configuration based on an objective function value. The predictive model is executed with second test configurations to predict the test result for each test configuration of the second test configurations. Test configurations are selected from the second test configurations based on the predicted test results to define third test configurations. The software under test is executed with the defined third test configurations to generate the test result for each test configuration of the third test configurations.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US11775878B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | Automated machine learning test system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A03%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Lin,%20Yu-Min&rft.date=2023-10-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11775878B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |