Automated machine learning test system

A computing device selects new test configurations for testing software. Software under test is executed with first test configurations to generate a test result for each test configuration. Each test configuration includes a value for each test parameter where each test parameter is an input to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lin, Yu-Min, Pederson, Bengt Wisen, Gao, Yan, Tan, Pei-Yi, Wright, Raymond Eugene, Tharrington, Jr., Ricky Dee, Griffin, Joshua David
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Lin, Yu-Min
Pederson, Bengt Wisen
Gao, Yan
Tan, Pei-Yi
Wright, Raymond Eugene
Tharrington, Jr., Ricky Dee
Griffin, Joshua David
description A computing device selects new test configurations for testing software. Software under test is executed with first test configurations to generate a test result for each test configuration. Each test configuration includes a value for each test parameter where each test parameter is an input to the software under test. A predictive model is trained using each test configuration of the first test configurations in association with the test result generated for each test configuration based on an objective function value. The predictive model is executed with second test configurations to predict the test result for each test configuration of the second test configurations. Test configurations are selected from the second test configurations based on the predicted test results to define third test configurations. The software under test is executed with the defined third test configurations to generate the test result for each test configuration of the third test configurations.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11775878B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11775878B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11775878B23</originalsourceid><addsrcrecordid>eNrjZFBzLC3Jz00sSU1RyE1MzsjMS1XISU0sysvMS1coSS0uUSiuLC5JzeVhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfGhwYaG5uamFuYWTkbGxKgBAIsXKAc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Automated machine learning test system</title><source>esp@cenet</source><creator>Lin, Yu-Min ; Pederson, Bengt Wisen ; Gao, Yan ; Tan, Pei-Yi ; Wright, Raymond Eugene ; Tharrington, Jr., Ricky Dee ; Griffin, Joshua David</creator><creatorcontrib>Lin, Yu-Min ; Pederson, Bengt Wisen ; Gao, Yan ; Tan, Pei-Yi ; Wright, Raymond Eugene ; Tharrington, Jr., Ricky Dee ; Griffin, Joshua David</creatorcontrib><description>A computing device selects new test configurations for testing software. Software under test is executed with first test configurations to generate a test result for each test configuration. Each test configuration includes a value for each test parameter where each test parameter is an input to the software under test. A predictive model is trained using each test configuration of the first test configurations in association with the test result generated for each test configuration based on an objective function value. The predictive model is executed with second test configurations to predict the test result for each test configuration of the second test configurations. Test configurations are selected from the second test configurations based on the predicted test results to define third test configurations. The software under test is executed with the defined third test configurations to generate the test result for each test configuration of the third test configurations.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231003&amp;DB=EPODOC&amp;CC=US&amp;NR=11775878B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231003&amp;DB=EPODOC&amp;CC=US&amp;NR=11775878B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Lin, Yu-Min</creatorcontrib><creatorcontrib>Pederson, Bengt Wisen</creatorcontrib><creatorcontrib>Gao, Yan</creatorcontrib><creatorcontrib>Tan, Pei-Yi</creatorcontrib><creatorcontrib>Wright, Raymond Eugene</creatorcontrib><creatorcontrib>Tharrington, Jr., Ricky Dee</creatorcontrib><creatorcontrib>Griffin, Joshua David</creatorcontrib><title>Automated machine learning test system</title><description>A computing device selects new test configurations for testing software. Software under test is executed with first test configurations to generate a test result for each test configuration. Each test configuration includes a value for each test parameter where each test parameter is an input to the software under test. A predictive model is trained using each test configuration of the first test configurations in association with the test result generated for each test configuration based on an objective function value. The predictive model is executed with second test configurations to predict the test result for each test configuration of the second test configurations. Test configurations are selected from the second test configurations based on the predicted test results to define third test configurations. The software under test is executed with the defined third test configurations to generate the test result for each test configuration of the third test configurations.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFBzLC3Jz00sSU1RyE1MzsjMS1XISU0sysvMS1coSS0uUSiuLC5JzeVhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfGhwYaG5uamFuYWTkbGxKgBAIsXKAc</recordid><startdate>20231003</startdate><enddate>20231003</enddate><creator>Lin, Yu-Min</creator><creator>Pederson, Bengt Wisen</creator><creator>Gao, Yan</creator><creator>Tan, Pei-Yi</creator><creator>Wright, Raymond Eugene</creator><creator>Tharrington, Jr., Ricky Dee</creator><creator>Griffin, Joshua David</creator><scope>EVB</scope></search><sort><creationdate>20231003</creationdate><title>Automated machine learning test system</title><author>Lin, Yu-Min ; Pederson, Bengt Wisen ; Gao, Yan ; Tan, Pei-Yi ; Wright, Raymond Eugene ; Tharrington, Jr., Ricky Dee ; Griffin, Joshua David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11775878B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Lin, Yu-Min</creatorcontrib><creatorcontrib>Pederson, Bengt Wisen</creatorcontrib><creatorcontrib>Gao, Yan</creatorcontrib><creatorcontrib>Tan, Pei-Yi</creatorcontrib><creatorcontrib>Wright, Raymond Eugene</creatorcontrib><creatorcontrib>Tharrington, Jr., Ricky Dee</creatorcontrib><creatorcontrib>Griffin, Joshua David</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, Yu-Min</au><au>Pederson, Bengt Wisen</au><au>Gao, Yan</au><au>Tan, Pei-Yi</au><au>Wright, Raymond Eugene</au><au>Tharrington, Jr., Ricky Dee</au><au>Griffin, Joshua David</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Automated machine learning test system</title><date>2023-10-03</date><risdate>2023</risdate><abstract>A computing device selects new test configurations for testing software. Software under test is executed with first test configurations to generate a test result for each test configuration. Each test configuration includes a value for each test parameter where each test parameter is an input to the software under test. A predictive model is trained using each test configuration of the first test configurations in association with the test result generated for each test configuration based on an objective function value. The predictive model is executed with second test configurations to predict the test result for each test configuration of the second test configurations. Test configurations are selected from the second test configurations based on the predicted test results to define third test configurations. The software under test is executed with the defined third test configurations to generate the test result for each test configuration of the third test configurations.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11775878B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Automated machine learning test system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A03%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Lin,%20Yu-Min&rft.date=2023-10-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11775878B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true