Distance estimation to objects and free-space boundaries in autonomous machine applications

In various examples, a deep neural network (DNN) is trained-using image data alone-to accurately predict distances to objects, obstacles, and/or a detected free-space boundary. The DNN may be trained with ground truth data that is generated using sensor data representative of motion of an ego-vehicl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Oh, Sangmin, Park, Minwoo, Kwon, Junghyun, Yang, Yilin, Nister, David, Jujjavarapu, Bala Siva Sashank, Ye, Zhaoting
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Oh, Sangmin
Park, Minwoo
Kwon, Junghyun
Yang, Yilin
Nister, David
Jujjavarapu, Bala Siva Sashank
Ye, Zhaoting
description In various examples, a deep neural network (DNN) is trained-using image data alone-to accurately predict distances to objects, obstacles, and/or a detected free-space boundary. The DNN may be trained with ground truth data that is generated using sensor data representative of motion of an ego-vehicle and/or sensor data from any number of depth predicting sensors-such as, without limitation, RADAR sensors, LIDAR sensors, and/or SONAR sensors. The DNN may be trained using two or more loss functions each corresponding to a particular portion of the environment that depth is predicted for, such that-in deployment-more accurate depth estimates for objects, obstacles, and/or the detected free-space boundary are computed by the DNN. In some embodiments, a sampling algorithm may be used to sample depth values corresponding to an input resolution of the DNN from a predicted depth map of the DNN at an output resolution of the DNN.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11769052B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11769052B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11769052B23</originalsourceid><addsrcrecordid>eNqNzL0KwlAMQOEuDqK-Q3yAgq2ouPqHuzo5lPQ2xUhvcmnS91eKD-B0lo8zzZ4nNkcJBGTOEZ1VwBW0flNwA5QG2p4ot4RfVOsgDfZMBiyAg6to1MEgYnixEGBKHYdxY_Ns0mJntPh1li0v5_vxmlPSisahkFePW1HstvvVpjyU63_MB64RPDA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Distance estimation to objects and free-space boundaries in autonomous machine applications</title><source>esp@cenet</source><creator>Oh, Sangmin ; Park, Minwoo ; Kwon, Junghyun ; Yang, Yilin ; Nister, David ; Jujjavarapu, Bala Siva Sashank ; Ye, Zhaoting</creator><creatorcontrib>Oh, Sangmin ; Park, Minwoo ; Kwon, Junghyun ; Yang, Yilin ; Nister, David ; Jujjavarapu, Bala Siva Sashank ; Ye, Zhaoting</creatorcontrib><description>In various examples, a deep neural network (DNN) is trained-using image data alone-to accurately predict distances to objects, obstacles, and/or a detected free-space boundary. The DNN may be trained with ground truth data that is generated using sensor data representative of motion of an ego-vehicle and/or sensor data from any number of depth predicting sensors-such as, without limitation, RADAR sensors, LIDAR sensors, and/or SONAR sensors. The DNN may be trained using two or more loss functions each corresponding to a particular portion of the environment that depth is predicted for, such that-in deployment-more accurate depth estimates for objects, obstacles, and/or the detected free-space boundary are computed by the DNN. In some embodiments, a sampling algorithm may be used to sample depth values corresponding to an input resolution of the DNN from a predicted depth map of the DNN at an output resolution of the DNN.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE ORDIFFERENT FUNCTION ; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PERFORMING OPERATIONS ; PHYSICS ; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TOTHE CONTROL OF A PARTICULAR SUB-UNIT ; TRANSPORTING ; VEHICLES IN GENERAL</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230926&amp;DB=EPODOC&amp;CC=US&amp;NR=11769052B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230926&amp;DB=EPODOC&amp;CC=US&amp;NR=11769052B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Oh, Sangmin</creatorcontrib><creatorcontrib>Park, Minwoo</creatorcontrib><creatorcontrib>Kwon, Junghyun</creatorcontrib><creatorcontrib>Yang, Yilin</creatorcontrib><creatorcontrib>Nister, David</creatorcontrib><creatorcontrib>Jujjavarapu, Bala Siva Sashank</creatorcontrib><creatorcontrib>Ye, Zhaoting</creatorcontrib><title>Distance estimation to objects and free-space boundaries in autonomous machine applications</title><description>In various examples, a deep neural network (DNN) is trained-using image data alone-to accurately predict distances to objects, obstacles, and/or a detected free-space boundary. The DNN may be trained with ground truth data that is generated using sensor data representative of motion of an ego-vehicle and/or sensor data from any number of depth predicting sensors-such as, without limitation, RADAR sensors, LIDAR sensors, and/or SONAR sensors. The DNN may be trained using two or more loss functions each corresponding to a particular portion of the environment that depth is predicted for, such that-in deployment-more accurate depth estimates for objects, obstacles, and/or the detected free-space boundary are computed by the DNN. In some embodiments, a sampling algorithm may be used to sample depth values corresponding to an input resolution of the DNN from a predicted depth map of the DNN at an output resolution of the DNN.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE ORDIFFERENT FUNCTION</subject><subject>CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PERFORMING OPERATIONS</subject><subject>PHYSICS</subject><subject>ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TOTHE CONTROL OF A PARTICULAR SUB-UNIT</subject><subject>TRANSPORTING</subject><subject>VEHICLES IN GENERAL</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzL0KwlAMQOEuDqK-Q3yAgq2ouPqHuzo5lPQ2xUhvcmnS91eKD-B0lo8zzZ4nNkcJBGTOEZ1VwBW0flNwA5QG2p4ot4RfVOsgDfZMBiyAg6to1MEgYnixEGBKHYdxY_Ns0mJntPh1li0v5_vxmlPSisahkFePW1HstvvVpjyU63_MB64RPDA</recordid><startdate>20230926</startdate><enddate>20230926</enddate><creator>Oh, Sangmin</creator><creator>Park, Minwoo</creator><creator>Kwon, Junghyun</creator><creator>Yang, Yilin</creator><creator>Nister, David</creator><creator>Jujjavarapu, Bala Siva Sashank</creator><creator>Ye, Zhaoting</creator><scope>EVB</scope></search><sort><creationdate>20230926</creationdate><title>Distance estimation to objects and free-space boundaries in autonomous machine applications</title><author>Oh, Sangmin ; Park, Minwoo ; Kwon, Junghyun ; Yang, Yilin ; Nister, David ; Jujjavarapu, Bala Siva Sashank ; Ye, Zhaoting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11769052B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE ORDIFFERENT FUNCTION</topic><topic>CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PERFORMING OPERATIONS</topic><topic>PHYSICS</topic><topic>ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TOTHE CONTROL OF A PARTICULAR SUB-UNIT</topic><topic>TRANSPORTING</topic><topic>VEHICLES IN GENERAL</topic><toplevel>online_resources</toplevel><creatorcontrib>Oh, Sangmin</creatorcontrib><creatorcontrib>Park, Minwoo</creatorcontrib><creatorcontrib>Kwon, Junghyun</creatorcontrib><creatorcontrib>Yang, Yilin</creatorcontrib><creatorcontrib>Nister, David</creatorcontrib><creatorcontrib>Jujjavarapu, Bala Siva Sashank</creatorcontrib><creatorcontrib>Ye, Zhaoting</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Oh, Sangmin</au><au>Park, Minwoo</au><au>Kwon, Junghyun</au><au>Yang, Yilin</au><au>Nister, David</au><au>Jujjavarapu, Bala Siva Sashank</au><au>Ye, Zhaoting</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Distance estimation to objects and free-space boundaries in autonomous machine applications</title><date>2023-09-26</date><risdate>2023</risdate><abstract>In various examples, a deep neural network (DNN) is trained-using image data alone-to accurately predict distances to objects, obstacles, and/or a detected free-space boundary. The DNN may be trained with ground truth data that is generated using sensor data representative of motion of an ego-vehicle and/or sensor data from any number of depth predicting sensors-such as, without limitation, RADAR sensors, LIDAR sensors, and/or SONAR sensors. The DNN may be trained using two or more loss functions each corresponding to a particular portion of the environment that depth is predicted for, such that-in deployment-more accurate depth estimates for objects, obstacles, and/or the detected free-space boundary are computed by the DNN. In some embodiments, a sampling algorithm may be used to sample depth values corresponding to an input resolution of the DNN from a predicted depth map of the DNN at an output resolution of the DNN.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11769052B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE ORDIFFERENT FUNCTION
CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PERFORMING OPERATIONS
PHYSICS
ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TOTHE CONTROL OF A PARTICULAR SUB-UNIT
TRANSPORTING
VEHICLES IN GENERAL
title Distance estimation to objects and free-space boundaries in autonomous machine applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A34%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Oh,%20Sangmin&rft.date=2023-09-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11769052B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true