Predictive maintenance and diagnostics using modular condition monitoring

Predictive maintenance and diagnostics for an electronic module of an autonomous vehicle using modular condition monitoring is described herein. A computing system receives a signal from a data logger which monitors a condition of the electronic module of the autonomous vehicle, wherein the signal i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kaufman, Chase Brian, Nielsen, Erik Birk, Schmidt, Michael Frank, Glidden, Samuel Harrison
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Kaufman, Chase Brian
Nielsen, Erik Birk
Schmidt, Michael Frank
Glidden, Samuel Harrison
description Predictive maintenance and diagnostics for an electronic module of an autonomous vehicle using modular condition monitoring is described herein. A computing system receives a signal from a data logger which monitors a condition of the electronic module of the autonomous vehicle, wherein the signal is indicative of damage accumulation information thereof. The computing system identifies a type of the electronic module and a damage accumulation threshold for the type of the electronic module to generate a predicted maintenance schedule for the electronic module of the autonomous vehicle. The damage accumulation information can be stored in a data store to define the damage accumulation threshold for the type of the electronic module.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US11763609B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US11763609B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US11763609B23</originalsourceid><addsrcrecordid>eNqNikEKwkAMAPfiQap_iA8oWAsVr4qiN0E9l7AbS6BNyib1_fbgAzwNzMwy3O6ZEkfnD8GALE6CEglQEiTGTtSco8FkLB0MmqYeM0SVxM4qsxF2zXNchcUbe6P1j0XYXM7P07WkUVuyESMJeft6VNW-qZvt4bir_3m-UYM1yg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Predictive maintenance and diagnostics using modular condition monitoring</title><source>esp@cenet</source><creator>Kaufman, Chase Brian ; Nielsen, Erik Birk ; Schmidt, Michael Frank ; Glidden, Samuel Harrison</creator><creatorcontrib>Kaufman, Chase Brian ; Nielsen, Erik Birk ; Schmidt, Michael Frank ; Glidden, Samuel Harrison</creatorcontrib><description>Predictive maintenance and diagnostics for an electronic module of an autonomous vehicle using modular condition monitoring is described herein. A computing system receives a signal from a data logger which monitors a condition of the electronic module of the autonomous vehicle, wherein the signal is indicative of damage accumulation information thereof. The computing system identifies a type of the electronic module and a damage accumulation threshold for the type of the electronic module to generate a predicted maintenance schedule for the electronic module of the autonomous vehicle. The damage accumulation information can be stored in a data store to define the damage accumulation threshold for the type of the electronic module.</description><language>eng</language><subject>ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDEDFOR ELSEWHERE ; CALCULATING ; CHECKING-DEVICES ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; GENERATING RANDOM NUMBERS ; PHYSICS ; REGISTERING OR INDICATING THE WORKING OF MACHINES ; TIME OR ATTENDANCE REGISTERS ; VOTING OR LOTTERY APPARATUS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230919&amp;DB=EPODOC&amp;CC=US&amp;NR=11763609B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230919&amp;DB=EPODOC&amp;CC=US&amp;NR=11763609B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Kaufman, Chase Brian</creatorcontrib><creatorcontrib>Nielsen, Erik Birk</creatorcontrib><creatorcontrib>Schmidt, Michael Frank</creatorcontrib><creatorcontrib>Glidden, Samuel Harrison</creatorcontrib><title>Predictive maintenance and diagnostics using modular condition monitoring</title><description>Predictive maintenance and diagnostics for an electronic module of an autonomous vehicle using modular condition monitoring is described herein. A computing system receives a signal from a data logger which monitors a condition of the electronic module of the autonomous vehicle, wherein the signal is indicative of damage accumulation information thereof. The computing system identifies a type of the electronic module and a damage accumulation threshold for the type of the electronic module to generate a predicted maintenance schedule for the electronic module of the autonomous vehicle. The damage accumulation information can be stored in a data store to define the damage accumulation threshold for the type of the electronic module.</description><subject>ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDEDFOR ELSEWHERE</subject><subject>CALCULATING</subject><subject>CHECKING-DEVICES</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>GENERATING RANDOM NUMBERS</subject><subject>PHYSICS</subject><subject>REGISTERING OR INDICATING THE WORKING OF MACHINES</subject><subject>TIME OR ATTENDANCE REGISTERS</subject><subject>VOTING OR LOTTERY APPARATUS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNikEKwkAMAPfiQap_iA8oWAsVr4qiN0E9l7AbS6BNyib1_fbgAzwNzMwy3O6ZEkfnD8GALE6CEglQEiTGTtSco8FkLB0MmqYeM0SVxM4qsxF2zXNchcUbe6P1j0XYXM7P07WkUVuyESMJeft6VNW-qZvt4bir_3m-UYM1yg</recordid><startdate>20230919</startdate><enddate>20230919</enddate><creator>Kaufman, Chase Brian</creator><creator>Nielsen, Erik Birk</creator><creator>Schmidt, Michael Frank</creator><creator>Glidden, Samuel Harrison</creator><scope>EVB</scope></search><sort><creationdate>20230919</creationdate><title>Predictive maintenance and diagnostics using modular condition monitoring</title><author>Kaufman, Chase Brian ; Nielsen, Erik Birk ; Schmidt, Michael Frank ; Glidden, Samuel Harrison</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US11763609B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDEDFOR ELSEWHERE</topic><topic>CALCULATING</topic><topic>CHECKING-DEVICES</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>GENERATING RANDOM NUMBERS</topic><topic>PHYSICS</topic><topic>REGISTERING OR INDICATING THE WORKING OF MACHINES</topic><topic>TIME OR ATTENDANCE REGISTERS</topic><topic>VOTING OR LOTTERY APPARATUS</topic><toplevel>online_resources</toplevel><creatorcontrib>Kaufman, Chase Brian</creatorcontrib><creatorcontrib>Nielsen, Erik Birk</creatorcontrib><creatorcontrib>Schmidt, Michael Frank</creatorcontrib><creatorcontrib>Glidden, Samuel Harrison</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kaufman, Chase Brian</au><au>Nielsen, Erik Birk</au><au>Schmidt, Michael Frank</au><au>Glidden, Samuel Harrison</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Predictive maintenance and diagnostics using modular condition monitoring</title><date>2023-09-19</date><risdate>2023</risdate><abstract>Predictive maintenance and diagnostics for an electronic module of an autonomous vehicle using modular condition monitoring is described herein. A computing system receives a signal from a data logger which monitors a condition of the electronic module of the autonomous vehicle, wherein the signal is indicative of damage accumulation information thereof. The computing system identifies a type of the electronic module and a damage accumulation threshold for the type of the electronic module to generate a predicted maintenance schedule for the electronic module of the autonomous vehicle. The damage accumulation information can be stored in a data store to define the damage accumulation threshold for the type of the electronic module.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US11763609B2
source esp@cenet
subjects ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDEDFOR ELSEWHERE
CALCULATING
CHECKING-DEVICES
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
GENERATING RANDOM NUMBERS
PHYSICS
REGISTERING OR INDICATING THE WORKING OF MACHINES
TIME OR ATTENDANCE REGISTERS
VOTING OR LOTTERY APPARATUS
title Predictive maintenance and diagnostics using modular condition monitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A21%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Kaufman,%20Chase%20Brian&rft.date=2023-09-19&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS11763609B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true